Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit

Abstract

Photothermal CO2 methanation offers a clean and sustainable solution to store intermittent renewable energy as synthetic CH4. However, its high reaction temperature and low space-time yield hinder its industrial application. Here we report an Au/Ce0.95Ru0.05O2 solid-solution catalyst exhibiting a remarkable photothermal CO2 methanation activity approaching the thermal catalysis limit under visible–near-infrared light irradiation without external heating. Localized surface-plasmon-induced hot-electron injection created abundant oxygen vacancies near the dispersed ruthenium sites, accelerating CO2 methanation. An approximately 6- to 8-fold increase in the pre-exponential factor was evidenced using Arrhenius plot analysis under visible–near-infrared light irradiation. Using a flow reactor, a photothermal CH4 production rate of \(473\,{\mathrm{mmol}}\,{\mathrm{g}}_{\mathrm{cat}}^{-1}\,{\mathrm{h}}^{-1}\) was obtained at a gas hourly space velocity of \(80,000\,{\mathrm{ml}}\,{\mathrm{g}}_{\mathrm{cat}}^{-1}\,{\mathrm{h}}^{-1}\) with ~100% CH4 selectivity, ~75% single-pass CO2 conversion and excellent durability. Our study offers insights into plasmonic-steered photochemistry, which may open opportunities for the high-yielding synthesis of carbon-based chemicals using solar energy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of photothermal CO2 methanation over Au/Ce0.95Ru0.05O2.
Fig. 2: Photothermal and thermal catalytic CO2 methanation model tests.
Fig. 3: Characterizations.
Fig. 4: Mechanistic studies.
Fig. 5: Isotopic trace experiments.
Fig. 6: Photothermal CO2 methanation in a flow reactor.
Fig. 7: Photothermal CO2 methanation on screen-printed catalyst thin layers.

Similar content being viewed by others

Data availability

All data are available in the ScienceDB repository at https://doi.org/10.57760/sciencedb.08102 or from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. Wang, W., Wang, S., Ma, X. & Gong, J. Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011).

    CAS  PubMed  Google Scholar 

  2. Global Roadmap for Implementing CO2 Utilization (Global CO2 Initiative, 2019); http://deepblue.lib.umich.edu/handle/2027.42/150624

  3. Bailera, M., Lisbona, P., Romeo, L. M. & Espatolero, S. Power to gas projects review: lab, pilot and demo plants for storing renewable energy and CO2. Renew. Sustain. Energy Rev. 69, 292–312 (2017).

    CAS  Google Scholar 

  4. Wulf, C., Linßen, J. & Zapp, P. Review of power-to-gas projects in Europe. Energy Procedia 155, 367–378 (2018).

    Google Scholar 

  5. Ren, J. et al. Targeting activation of CO2 and H2 over Ru-loaded ultrathin layered double hydroxides to achieve efficient photothermal CO2 methanation in flow-type system. Adv. Energy Mater. 7, 1601657 (2017).

    Google Scholar 

  6. Li, Y. et al. Selective light absorber-assisted single nickel atom catalysts for ambient sunlight-driven CO2 methanation. Nat. Commun. 10, 2359 (2019).

    PubMed  PubMed Central  Google Scholar 

  7. Chen, Y. et al. Cooperative catalysis coupling photo-/photothermal effect to drive Sabatier reaction with unprecedented conversion and selectivity. Joule 5, 3235–3251 (2021).

    CAS  Google Scholar 

  8. Chen, G. et al. Alumina-supported CoFe alloy catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 hydrogenation to hydrocarbons. Adv. Mater. 30, 1704663 (2018).

    Google Scholar 

  9. Li, Z. et al. Fe-based catalysts for the direct photohydrogenation of CO2 to value-added hydrocarbons. Adv. Energy Mater. 11, 2002783 (2021).

    CAS  Google Scholar 

  10. Kong, N. et al. Ruthenium nanoparticles supported on Mg(OH)2 microflowers as catalysts for photothermal carbon dioxide hydrogenation. ACS Appl. Nano Mater. 3, 3028–3033 (2020).

    CAS  Google Scholar 

  11. Wu, Z. et al. Niobium and titanium carbides (MXenes) as superior photothermal supports for CO2 photocatalysis. ACS Nano 15, 5696–5705 (2021).

    CAS  PubMed  Google Scholar 

  12. Li, X., Zhang, X., Everitt, H. O. & Liu, J. Light-induced thermal gradients in ruthenium catalysts significantly enhance ammonia production. Nano Lett. 19, 1706–1711 (2019).

    CAS  PubMed  Google Scholar 

  13. Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  PubMed  Google Scholar 

  14. Robatjazi, H. et al. Plasmon-induced selective carbon dioxide conversion on earth-abundant aluminum-cuprous oxide antenna-reactor nanoparticles. Nat. Commun. 8, 27 (2017).

    PubMed  PubMed Central  Google Scholar 

  15. Zhang, X. et al. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nat. Commun. 8, 14542 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Wei, Q., Wu, S. & Sun, Y. Quantum-sized metal catalysts for hot-electron-driven chemical transformation. Adv. Mater. 30, 1802082 (2018).

    Google Scholar 

  17. Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Google Scholar 

  18. Jiang, H. et al. Synergistic photothermal and photochemical partial oxidation of methane over noble metals incorporated in mesoporous silica. Chem. Commun. 55, 13765–13768 (2019).

    CAS  Google Scholar 

  19. Jiang, H. et al. Photocatalytic partial oxidation of methane on palladium-loaded strontium tantalate. Sol. RRL 3, 1900076 (2019).

    Google Scholar 

  20. Sun, Y. & Tang, Z. Photocatalytic hot-carrier chemistry. MRS Bull. 45, 20–25 (2020).

    CAS  Google Scholar 

  21. Chapkin, K. D. et al. Lifetime dynamics of plasmons in the few-atom limit. Proc. Natl Acad. Sci. USA 115, 9134–9139 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Jia, X., Zhang, X., Rui, N., Hu, X. & Liu, C. Structural effect of Ni/ZrO2 catalyst on CO2 methanation with enhanced activity. Appl. Catal. B Environ. 244, 159–169 (2019).

    CAS  Google Scholar 

  23. Gordon, S. & Mcbride, B. J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. Part 1: Analysis (NASA, 1994).

  24. Yu, Y., Williams, J. D. & Willets, K. A. Quantifying photothermal heating at plasmonic nanoparticles by scanning electrochemical microscopy. Faraday Discuss. 210, 29–39 (2018).

    CAS  PubMed  Google Scholar 

  25. Jiang, Q., Rogez, B., Claude, J.-B., Baffou, G. & Wenger, J. Temperature measurement in plasmonic nanoapertures used for optical trapping. ACS Photonics 6, 1763–1773 (2019).

    CAS  Google Scholar 

  26. Wang, Q.-Y. et al. Instantly detecting catalysts’ hot spots temperature in situ during photocatalysis by operando Raman spectroscopy. Anal. Chem. 93, 15517–15524 (2021).

    CAS  PubMed  Google Scholar 

  27. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Google Scholar 

  28. Xie, X., Li, Y., Liu, Z.-Q., Haruta, M. & Shen, W. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458, 746–749 (2009).

    CAS  PubMed  Google Scholar 

  29. Ge, H., Kuwahara, Y., Kusu, K. & Yamashita, H. Plasmon-induced catalytic CO2 hydrogenation by a nano-sheet Pt/HxMoO3−y hybrid with abundant surface oxygen vacancies. J. Mater. Chem. A 9, 13898–13907 (2021).

    CAS  Google Scholar 

  30. Bushira, F. A. et al. Plasmon-boosted Cu-doped TiO2 oxygen vacancy-rich luminol electrochemiluminescence for highly sensitive detection of alkaline phosphatase. Anal. Chem. 93, 15183–15191 (2021).

    CAS  PubMed  Google Scholar 

  31. Li, Y. et al. Plasmonic hot electrons from oxygen vacancies for infrared light-driven catalytic CO2 reduction on Bi2O3−x. Angew. Chem. Int. Ed. 60, 910–916 (2021).

    CAS  Google Scholar 

  32. Liu, X., Dong, G., Li, S., Lu, G. & Bi, Y. Direct observation of charge separation on anatase TiO2 crystals with selectively etched {001} facets. J. Am. Chem. Soc. 138, 2917–2920 (2016).

    CAS  PubMed  Google Scholar 

  33. Gassman, P. G. & Winter, C. H. Preparation, electrochemical oxidation, and XPS studies of unsymmetrical ruthenocenes bearing the pentamethylcyclopentadienyl ligand. J. Am. Chem. Soc. 110, 6130–6135 (1988).

    CAS  PubMed  Google Scholar 

  34. Soria, J., Conesa, J. C. & Martı́nez-Arias, A. Characterization of surface defects in CeO2 modified by incorporation of precious metals from chloride salts precursors: an EPR study using oxygen as probe molecule. Colloids Surf. A 158, 67–74 (1999).

    CAS  Google Scholar 

  35. Shoji, S. et al. Photocatalytic uphill conversion of natural gas beyond the limitation of thermal reaction systems. Nat. Catal. 3, 148–153 (2020).

    CAS  Google Scholar 

  36. Sharma, S. et al. Mechanistic insights into CO2 methanation over Ru-substituted CeO2. J. Phys. Chem. C. 120, 14101–14112 (2016).

    CAS  Google Scholar 

  37. Wang, F. et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 138, 6298–6305 (2016).

    CAS  PubMed  Google Scholar 

  38. Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    CAS  PubMed  Google Scholar 

  39. Du, L. et al. Plasmon-induced charge separation and recombination dynamics in gold−TiO2 nanoparticle systems: dependence on TiO2 particle size. J. Phys. Chem. C. 113, 6454–6462 (2009).

    CAS  Google Scholar 

  40. Mukherjee, S. et al. Hot electrons do the impossible: plasmon-induced dissociation of H2 on Au. Nano Lett. 13, 240–247 (2013).

    CAS  PubMed  Google Scholar 

  41. Swearer, D. F. et al. Heterometallic antenna−reactor complexes for photocatalysis. Proc. Natl Acad. Sci. USA 113, 8916–8920 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Fan, M. et al. Atomic Ru immobilized on porous h-BN through simple vacuum filtration for highly active and selective CO2 methanation. ACS Catal. 9, 10077–10086 (2019).

    CAS  Google Scholar 

  43. Sastre, F., Puga, A. V., Liu, L., Corma, A. & García, H. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation. J. Am. Chem. Soc. 136, 6798–6801 (2014).

    CAS  PubMed  Google Scholar 

  44. Jantarang, S. et al. Altering the influence of ceria oxygen vacancies in Ni/CexSiyO2 for photothermal CO2 methanation. Catal. Sci. Technol. 11, 5297–5309 (2021).

    CAS  Google Scholar 

  45. Mateo, D. et al. Efficient visible-light driven photothermal conversion of CO2 to methane by nickel nanoparticles supported on barium titanate. Adv. Funct. Mater. 31, 2008244 (2021).

    CAS  Google Scholar 

  46. Li, Z., Shi, R., Zhao, J. & Zhang, T. Ni-based catalysts derived from layered-double-hydroxide nanosheets for efficient photothermal CO2 reduction under flow-type system. Nano Res. 14, 4828–4832 (2021).

    CAS  Google Scholar 

  47. He, Z.-H. et al. Photothermal CO2 hydrogenation to hydrocarbons over trimetallic Co–Cu–Mn catalysts. Green. Chem. 23, 5775–5785 (2021).

    CAS  Google Scholar 

  48. Chen, X. et al. MOF-templated preparation of highly dispersed Co/Al2O3 composite as the photothermal catalyst with high solar-to-fuel efficiency for CO2 methanation. ACS Appl. Mater. Interfaces 12, 39304–39317 (2020).

    CAS  PubMed  Google Scholar 

  49. Mateo, D., Albero, J. & García, H. Titanium-perovskite-supported RuO2 nanoparticles for photocatalytic CO2 methanation. Joule 3, 1949–1962 (2019).

    CAS  Google Scholar 

  50. Jelle, A. A. et al. Highly efficient ambient temperature CO2 photomethanation catalyzed by nanostructured RuO2 on silicon photonic crystal support. Adv. Energy Mater. 8, 1702277 (2018).

    Google Scholar 

  51. Meng, X. et al. Photothermal conversion of CO2 into CH4 with H2 over group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 53, 11478–11482 (2014).

    CAS  Google Scholar 

  52. Aziz, M. A. A. et al. Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation. Appl. Catal. B 147, 359–368 (2014).

    CAS  Google Scholar 

  53. Do, J. Y. et al. Effective thermocatalytic carbon dioxide methanation on Ca-inserted NiTiO3 perovskite. Fuel 271, 117624 (2020).

    CAS  Google Scholar 

  54. Ye, R.-P. et al. High-performance of nanostructured Ni/CeO2 catalyst on CO2 methanation. Appl. Catal. B 268, 118474 (2020).

    CAS  Google Scholar 

  55. Bukhari, S. N. et al. Optimal Ni loading towards efficient CH4 production from H2 and CO2 over Ni supported onto fibrous SBA-15. Int. J. Hydrog. Energy 44, 7228–7240 (2019).

    CAS  Google Scholar 

  56. Li, J. et al. Enhanced CO2 methanation activity of Ni/anatase catalyst by tuning strong metal–support interactions. ACS Catal. 9, 6342–6348 (2019).

    CAS  Google Scholar 

  57. Chai, S. et al. Boosting CO2 methanation activity on Ru/TiO2 catalysts by exposing (001) facets of anatase TiO2. J. CO2 Util. 33, 242–252 (2019).

    CAS  Google Scholar 

  58. Zhang, L., Bian, L., Zhu, Z. & Li, Z. La-promoted Ni/Mg–Al catalysts with highly enhanced low-temperature CO2 methanation performance. Int. J. Hydrog. Energy 43, 2197–2206 (2018).

    CAS  Google Scholar 

  59. Mutz, B. et al. Potential of an alumina-supported Ni3Fe catalyst in the methanation of CO2: impact of alloy formation on activity and stability. ACS Catal. 7, 6802–6814 (2017).

    CAS  Google Scholar 

  60. Zhou, G. et al. Role of surface Ni and Ce species of Ni/CeO2 catalyst in CO2 methanation. Appl. Surf. Sci. 383, 248–252 (2016).

    CAS  Google Scholar 

  61. Rahmani, S., Rezaei, M. & Meshkani, F. Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation. J. Ind. Eng. Chem. 20, 1346–1352 (2014).

    CAS  Google Scholar 

  62. Tada, S., Ochieng, O. J., Kikuchi, R., Haneda, T. & Kameyama, H. Promotion of CO2 methanation activity and CH4 selectivity at low temperatures over Ru/CeO2/Al2O3 catalysts. Int. J. Hydrog. Energy 39, 10090–10100 (2014).

    CAS  Google Scholar 

  63. Kujirai, T., Yamaguchi, A., Fujita, T., Abe, H. & Miyauchi, M. Active site separation of photocatalytic steam reforming of methane using a gas-phase photoelectrochemical system. Chem. Commun. 57, 8007–8010 (2021).

    CAS  Google Scholar 

  64. Chen, Y. et al. A robust fuel cell operated on nearly dry methane at 500 °C enabled by synergistic thermal catalysis and electrocatalysis. Nat. Energy 3, 1042–1050 (2018).

    CAS  Google Scholar 

  65. Guo, Y. et al. Low-temperature CO2 methanation over CeO2-supported Ru single atoms, nanoclusters, and nanoparticles competitively tuned by strong metal–support interactions and H-spillover effect. ACS Catal. 8, 6203–6215 (2018).

    CAS  Google Scholar 

  66. Goubin, F. et al. Experimental and theoretical characterization of the optical properties of CeO2, SrCeO3, and Sr2CeO4 containing Ce4+ (f0) Ions. Chem. Mater. 16, 662–669 (2004).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant numbers 22272078, 91963121), the National Key Research and Development Program of the Ministry of Science and Technology of China (number 2020YFA0406102), and the Frontiers Science Center for Critical Earth Material Cycling of Nanjing University.

Author information

Authors and Affiliations

Authors

Contributions

M.Z. supervised the project and conceived the idea. M.Z. and H.J. designed the experiments. H.J. and L.W. performed the synthesis, characterizations and performance tests. R.G. and W.D. provided the apparatus and helped perform the isotopic tracer analysis. H.K., A.Y. and M.M. reproduced the photothermal catalytic performance and carried out operando DRIFTS measurement. H.S. provided the apparatus and helped perform the EPR and ultraviolet–visible–near-infrared DRS tests. G.S. conducted the electromagnetic simulations. G.S., L.L., J.Z., F.Z., F.L., M.M., W.D. and M.Z. discussed the experimental results. H.J., G.S., A.Y., M.M., W.D. and M.Z. wrote the manuscript. All authors discussed the results and assisted during manuscript preparation.

Corresponding author

Correspondence to Miao Zhong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Agustin Bueno Lopez and Emiliano Cortés for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Figs. 1–43 and Tables 1–9.

Supplementary Video 1

Reaction using Au/Ce0.95Ru0.05O2.

Supplementary Video 2

Reaction using Ce0.95Ru0.05O2.

Source data

Source Data Fig. 2

Data used to plot the figures.

Source Data Fig. 3

Data used to plot the figures.

Source Data Fig. 4

Data used to plot the figures.

Source Data Fig. 5

Data used to plot the figures.

Source Data Fig. 6

Data used to plot the figures.

Source Data Fig. 7

Data used to plot the figures.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Wang, L., Kaneko, H. et al. Light-driven CO2 methanation over Au-grafted Ce0.95Ru0.05O2 solid-solution catalysts with activities approaching the thermodynamic limit. Nat Catal 6, 519–530 (2023). https://doi.org/10.1038/s41929-023-00970-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00970-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing