Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph

Abstract

Methanol, an organic one-carbon (C1) compound, represents an attractive alternative carbon source for microbial fermentation. Despite considerable advancements in methanol utilization by prokaryotes such as Escherichia coli, engineering eukaryotic model organisms such as Saccharomyces cerevisiae into synthetic methylotrophs remains challenging. Here, an engineered module circuit strategy combined with adaptive laboratory evolution was applied to engineer S. cerevisiae to use methanol as the sole carbon source. We revealed that the evolved glyoxylate-based serine pathway plays an important role in methanol-dependent growth by promoting formaldehyde assimilation. Further, we determined that the isoprenoid biosynthetic pathway was upregulated, resulting in an increased concentration of squalene and ergosterol in our evolved strain. These changes could potentially alleviate cell membrane damage in the presence of methanol. This work sets the stage for expanding the potential of exploiting S. cerevisiae as a potential organic one-carbon platform for biochemical or biofuel production.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evaluation of combinatorial methanol metabolic pathways in S. cerevisiae.
Fig. 2: Peroxisomal compartmentalization of the Aox-XuMP pathway.
Fig. 3: Modularization-strategy-enhanced methanol utilization in methylotrophic S. cerevisiae.
Fig. 4: Adaptive laboratory evolution strategy to promote methanol and/or xylose utilization in engineering yeast.
Fig. 5: Evaluation of phenotypes and gene targets in the parental and evolved strains.
Fig. 6: gSerine pathway improved formaldehyde assimilation in methanol-containing medium.
Fig. 7: The Shm2-dependent gSerine pathway promoted methanol assimilation.
Fig. 8: Production of flaviolin by introducing type-III PKS RppA.

Similar content being viewed by others

Data availability

The RNA-seq raw data can be downloaded from the Genome Expression Omnibus website (https://www.ncbi.nlm.nih.gov/geo/) with series no. GSE173802. The accession no. for the genome sequence data of evolved strains reported in this paper is [NCBI.SRA]:[PRJNA728351]. All other data that support the findings in this study are available on request. All plasmids and strains used in this study can be obtained from Z.B. under a material transfer agreement. Source Data are provided with this paper.

References

  1. Jiang, W. et al. Metabolic engineering strategies to enable microbial utilization of C1 feedstocks. Nat. Chem. Biol. 17, 845–855 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Szima, S. & Cormos, C.-C. Improving methanol synthesis from carbon-free H2 and captured CO2: a techno-economic and environmental evaluation. J. CO2 Util. 24, 555–563 (2018).

  3. Zhang, W. et al. Guidance for engineering of synthetic methylotrophy based on methanol metabolism in methylotrophy. RSC Adv. 7, 4083–4091 (2017).

    Article  CAS  Google Scholar 

  4. Ochsner, A. M., Sonntag, F., Buchhaupt, M., Schrader, J. & Vorholt, J. A. Methylobacterium extorquens: methylotrophy and biotechnological applications. Appl. Microbiol. Biotechnol. 99, 517–534 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. Chen, F. Y.-H., Jung, H.-W., Tsuei, C.-Y. & Liao, J. C. Converting Escherichia coli to a synthetic methylotroph growing solely on methanol. Cell 182, 933–946 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Gleizer, S. et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell 179, 1255–1263 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tsao, G. T. Annual Reports on Fermentation Processes (Elsevier, 2014).

  8. Patel, S. K. et al. Hierarchical macroporous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl. Mater. Interfaces 11, 18968–18977 (2019).

    Article  CAS  PubMed  Google Scholar 

  9. Conrado, R. J. & Gonzalez, R. Envisioning the bioconversion of methane to liquid fuels. Science 343, 621–623 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Meunier, N., Chauvy, R., Mouhoubi, S., Thomas, D. & De Weireld, G. Alternative production of methanol from industrial CO2. Renew. Energy 146, 1192–1203 (2020).

    Article  CAS  Google Scholar 

  11. Cai, P., Gao, J. & Zhou, Y. CRISPR-mediated genome editing in non-conventional yeasts for biotechnological applications. Microb. Cell Factories 18, 63 (2019).

    Article  Google Scholar 

  12. Woolston, B. M., King, J. R., Reiter, M., Van Hove, B. & Stephanopoulos, G. Improving formaldehyde consumption drives methanol assimilation in engineered E. coli. Nat. Commun. 9, 1–12 (2018).

    Article  CAS  Google Scholar 

  13. Whitaker, W. B. et al. Engineering the biological conversion of methanol to specialty chemicals in Escherichia coli. Metab. Eng. 39, 49–59 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Tuyishime, P. et al. Engineering Corynebacterium glutamicum for methanol-dependent growth and glutamate production. Metab. Eng. 49, 220–231 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Price, J. V., Chen, L., Whitaker, W. B., Papoutsakis, E. & Chen, W. Scaffoldless engineered enzyme assembly for enhanced methanol utilization. Proc. Natl Acad. Sci. USA 113, 12691–12696 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yu, H. & Liao, J. C. A modified serine cycle in Escherichia coli coverts methanol and CO2 to two-carbon compounds. Nat. Commun. 9, 3992 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Meyer, F. et al. Methanol-essential growth of Escherichia coli. Nat. Commun. 9, 1508 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kim, S. et al. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat. Chem. Biol. 16, 538–545 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Keller, P. et al. Generation of an Escherichia coli strain growing on methanol via the ribulose monophosphate cycle. Nat. Commun. 13, 5243 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Attfield, P. V. Stress tolerance: the key to effective strains of industrial baker’s yeast. Nat. Biotechnol. 15, 1351–1357 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Nielsen, J. Yeast systems biology: model organism and cell factory. Biotechnol. J. 14, e1800421 (2019).

    Article  PubMed  Google Scholar 

  22. Lourens-Hattingh, A. & Viljoen, B. C. Growth and survival of a probiotic yeast in dairy products. Food Res. Int. 34, 791–796 (2001).

    Article  CAS  Google Scholar 

  23. Wang, G., Huang, M. & Nielsen, J. Exploring the potential of Saccharomyces cerevisiae for biopharmaceutical protein production. Curr. Opin. Biotechnol. 48, 77–84 (2017).

    Article  PubMed  Google Scholar 

  24. Nielsen, J., Larsson, C., van Maris, A. & Pronk, J. Metabolic engineering of yeast for production of fuels and chemicals. Curr. Opin. Biotechnol. 24, 398–404 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Yasokawa, D. et al. Toxicity of methanol and formaldehyde towards Saccharomyces cerevisiae as assessed by DNA microarray analysis. Appl. Biochem. Biotechnol. 160, 1685–1698 (2010).

    Article  CAS  PubMed  Google Scholar 

  26. Stanley, D., Bandara, A., Fraser, S., Chambers, P. J. & Stanley, G. A. The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J. Appl. Microbiol. 109, 13–24 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. Zhou, Y. J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Parapouli, M., Vasileiadis, A., Afendra, A. S. & Hatziloukas, E. Saccharomyces cerevisiae and its industrial applications. AIMS Microbiol. 6, 1–31 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dai, Z. et al. Metabolic construction strategies for direct methanol utilization in Saccharomyces cerevisiae. Bioresour. Technol. 245, 1407–1412 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Espinosa, M. I., Williams, T. C., Pretorius, I. S. & Paulsen, I. T. Benchmarking two Saccharomyces cerevisiae laboratory strains for growth and transcriptional response to methanol. Synth. Syst. Biotechnol. 4, 180–188 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Espinosa, M. I. et al. Adaptive laboratory evolution of native methanol assimilation in Saccharomyces cerevisiae. Nat. Commun. 11, 5564 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Inan, M. & Meagher, M. M. Non-repressing carbon sources for alcohol oxidase (Aox1) promoter of Pichia pastoris. J. Biosci. Bioeng. 92, 585–589 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Cotton, C. A., Claassens, N. J., Benito-Vaquerizo, S. & Bar-Even, A. Renewable methanol and formate as microbial feedstocks. Curr. Opin. Biotechnol. 62, 168–180 (2020).

    Article  CAS  PubMed  Google Scholar 

  34. Zhan, C. et al. Strategies and challenges with the microbial conversion of methanol to high-value chemicals. Biotechnol. Bioeng. 118, 3655–3668 (2021).

    Article  CAS  PubMed  Google Scholar 

  35. Flamholz, A., Noor, E., Bar-Even, A. & Milo, R. eQuilibrator—the biochemical thermodynamics calculator. Nucleic Acids Res. 40, D770–D775 (2012).

    Article  CAS  PubMed  Google Scholar 

  36. Rußmayer, H. et al. Systems-level organization of yeast methylotrophic lifestyle. BMC Biol. 13, 80 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Vizeacoumar, F. J., Torres-Guzman, J. C., Bouard, D., Aitchison, J. D. & Rachubinski, R. A. Pex30p, Pex31p, and Pex32p form a family of peroxisomal integral membrane proteins regulating peroxisome size and number in Saccharomyces cerevisiae. Mol. Biol. Cell 15, 665–677 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou, Y. J. et al. Harnessing yeast peroxisomes for biosynthesis of fatty-acid-derived biofuels and chemicals with relieved side-pathway competition. J. Am. Chem. Soc. 138, 15368–15377 (2016).

    Article  CAS  PubMed  Google Scholar 

  39. Al-Saryi, N. A. et al. Two NAD-linked redox shuttles maintain the peroxisomal redox balance in Saccharomyces cerevisiae. Sci. Rep. 7, 11868 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ozimek, P. et al. Pyruvate carboxylase is an essential protein in the assembly of yeast peroxisomal oligomeric alcohol oxidase. Mol. Biol. Cell 14, 786–797 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ozimek, P. Z., Klompmaker, S. H., Visser, N., Veenhuis, M. & Van Der Klei, I. J. The transcarboxylase domain of pyruvate carboxylase is essential for assembly of the peroxisomal flavoenzyme alcohol oxidase. FEMS Yeast Res. 7, 1082–1092 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Watanabe, S., Kodaki, T. & Makino, K. Complete reversal of coenzyme specificity of xylitol dehydrogenase and increase of thermostability by the introduction of structural zinc. J. Biol. Chem. 280, 10340–10349 (2005).

    Article  CAS  PubMed  Google Scholar 

  43. Li, X. et al. Metabolic network remodelling enhances yeast’s fitness on xylose using aerobic glycolysis. Nat. Catal. 4, 783–796 (2021).

    Article  CAS  Google Scholar 

  44. Li, X., Chen, Y. & Nielsen, J. Harnessing xylose pathways for biofuels production. Curr. Opin. Biotechnol. 57, 56–65 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Hu, Z. et al. Recent advances in ergosterol biosynthesis and regulation mechanisms in Saccharomyces cerevisiae. Indian J. Microbiol. 57, 270–277 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Khan, M. S. A., Ahmad, I. & Cameotra, S. S. Phenyl aldehyde and propanoids exert multiple sites of action towards cell membrane and cell wall targeting ergosterol in Candida albicans. Amb. Express 3, 1–16 (2013).

    Article  CAS  Google Scholar 

  47. Veelders, M. et al. Structural basis of flocculin-mediated social behavior in yeast. Proc. Natl Acad. Sci. USA 107, 22511–22516 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Gstaiger, M. et al. Control of nutrient-sensitive transcription programs by the unconventional prefoldin URI. Science 302, 1208–1212 (2003).

    Article  CAS  PubMed  Google Scholar 

  49. Renwick, S. B., Snell, K. & Baumann, U. The crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy. Structure 6, 1105–1116 (1998).

    Article  CAS  PubMed  Google Scholar 

  50. Denis, V. & Daignan-Fornier, B. Synthesis of glutamine, glycine and 10-formyl tetrahydrofolate is coregulated with purine biosynthesis in Saccharomyces cerevisiae. Mol. Gen. Genet. MGG 259, 246–255 (1998).

    Article  CAS  PubMed  Google Scholar 

  51. Kastanos, E. K., Woldman, Y. Y. & Appling, D. R. Role of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae. Biochemistry 36, 14956–14964 (1997).

    Article  CAS  PubMed  Google Scholar 

  52. Cox, R. J. Polyketides, proteins and genes in fungi: programmed nano-machines begin to reveal their secrets. Org. Biomol. Chem. 5, 2010–2026 (2007).

    Article  CAS  PubMed  Google Scholar 

  53. Yang, D. et al. Repurposing type III polyketide synthase as a malonyl-CoA biosensor for metabolic engineering in bacteria. Proc. Natl. Acad. Sci. USA 115, 9835–9844 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Krog, A. et al. Methylotrophic Bacillus methanolicus encodes two chromosomal and one plasmid born NAD+ dependent methanol dehydrogenase paralogs with different catalytic and biochemical properties. PLoS One 8, e59188 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jordà, J. et al. Metabolic flux profiling of recombinant protein secreting Pichia pastoris growing on glucose: methanol mixtures. Microb. Cell Factories 11, 1–14 (2012).

    Article  Google Scholar 

  56. Jordà, J., De Jesus, S. S., Peltier, S., Ferrer, P. & Albiol, J. Metabolic flux analysis of recombinant Pichia pastoris growing on different glycerol/methanol mixtures by iterative fitting of NMR-derived 13C-labelling data from proteinogenic amino acids. Nat. Biotechnol. 31, 120–132 (2014).

    Google Scholar 

  57. Wakayama, K. et al. Regulation of intracellular formaldehyde toxicity during methanol metabolism of the methylotrophic yeast Pichia methanolica. J. Biosci. Bioeng. 122, 545–549 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Siegel, J. B. et al. Computational protein design enables a novel one-carbon assimilation pathway. Proc. Natl Acad. Sci. USA 112, 3704–3709 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lu, X. et al. Constructing a synthetic pathway for acetyl-coenzyme A from one-carbon through enzyme design. Nat. Commun. 10, 1378 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Claassens, N. J., Burgener, S., Vogeli, B., Erb, T. J. & Bar-Even, A. A critical comparison of cellular and cell-free bioproduction systems. Curr. Opin. Biotechnol. 60, 221–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Singh, A. K., Kishore, G. M. & Pakrasi, H. B. Emerging platforms for co-utilization of one-carbon substrates by photosynthetic organisms. Curr. Opin. Biotechnol. 53, 201–208 (2018).

    Article  CAS  PubMed  Google Scholar 

  62. Hong, K. K., Vongsangnak, W., Vemuri, G. N. & Nielsen, J. Unravelling evolutionary strategies of yeast for improving galactose utilization through integrated systems level analysis. Proc. Natl. Acad. Sci. USA 108, 12179–12184 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu, Z. W. et al. Multidimensional engineering of Saccharomyces cerevisiae for efficient synthesis of medium-chain fatty acids. Nat. Catal. 3, 64–74 (2020).

    Article  CAS  Google Scholar 

  64. Azachi, M., Henis, Y., Shapira, R. & Oren, A. The role of the outer membrane in formaldehyde tolerance in Escherichia coli VU3695 and Halomonas sp. Mac. Microbiol. 142, 1249–1254 (1996).

    Article  CAS  Google Scholar 

  65. Liu, G., Chen, Y., Færgeman, N.J. & Nielsen, J. Elimination of the last reactions in ergosterol biosynthesis alters the resistance of Saccharomyces cerevisiae to multiple stresses. FEMS Yeast Res. 17, fox063 (2017).

  66. Vanegas, J. M., Contreras, M. F., Faller, R. & Longo, M. L. Role of unsaturated lipid and ergosterol in ethanol tolerance of model yeast biomembranes. Biophys. J. 102, 507–516 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Liu, Q. et al. Rewiring carbon metabolism in yeast for high level production of aromatic chemicals. Nat. Commun. 10, 1–13 (2019).

    Google Scholar 

  68. Naito Y., Hino, K., Bono, H. & Ui-Tei, K. CRISPRdirect: Software for Designing CRISPR/Cas Guide RNA with Reduced Off-Target Sites (CRISPRdirect, 2015); http://crispr.dbcls.jp/

  69. Qin, J. et al. Modular pathway rewiring of Saccharomyces cerevisiae enables high-level production of l-ornithine. Nat. Commun. 6, 224 (2015).

    Article  Google Scholar 

  70. Krivoruchko, A., Serrano-Amatriain, C., Chen, Y., Siewers, V. & Nielsen, J. Improving biobutanol production in engineered Saccharomyces cerevisiae by manipulation of acetyl-CoA metabolism. J. Ind. Microbiol. Biotechnol. 40, 1051–1056 (2013).

    Article  CAS  PubMed  Google Scholar 

  71. Evers, M. E., Harder, W. & Veenhuis, M. In vitro dissociation and re-assembly of peroxisomal alcohol oxidases of Hansenula polymorpha and Pichia pastoris. FEBS Lett. 368, 293–296 (1995).

    Article  CAS  PubMed  Google Scholar 

  72. Couderc, R. & Baratti, J. Oxidation of methanol by the yeast, Pichia pastoris. Purification and properties of the alcohol oxidase. Agric. Biol. Chem. 44, 2279–2289 (1980).

    CAS  Google Scholar 

  73. Müller, J. E. et al. Engineering Escherichia coli for methanol conversion. Metab. Eng. 28, 190–201 (2015).

    Article  PubMed  Google Scholar 

  74. Zhan, C. et al. The Pichia pastoris transmembrane protein GT1 is a glycerol transporter and relieves the repression of glycerol on AOX1 expression. FEMS Yeast Res. 16, fow033 (2016).

    Article  PubMed  Google Scholar 

  75. Caspeta, L. et al. Altered sterol composition renders yeast thermotolerant. Science 346, 75–78 (2014).

    Article  CAS  PubMed  Google Scholar 

  76. Baidoo, E.E., Wang, G., Joshua, C.J., Benites, V.T. & Keasling, J.D. in Microbial Metabolomics 209–224 (Springer, 2019).

  77. Kim, J. et al. Engineering Saccharomyces cerevisiae for isoprenol production. Metab. Eng. 64, 154–166 (2021).

    Article  CAS  PubMed  Google Scholar 

  78. Yu, T. et al. Reprogramming yeast metabolism from alcoholic fermentation to lipogenesis. Cell 174, 1549–1558 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Deatherage, D.E. & Barrick, J.E. in Engineering and Analyzing Multicellular Systems 165–188 (Springer, 2014).

  80. Väremo, L., Nielsen, J. & Nookaew, I. Enriching the gene set analysis of genome-wide data by incorporating directionality of gene expression and combining statistical hypotheses and methods. Nucleic Acids Res. 41, 4378–4391 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Saccharomyces Genome Database (Stanford University, 2023); http://www.yeastgenome.org

  82. Incha, M. R. et al. Leveraging host metabolism for bisdemethoxycurcumin production in Pseudomonas putida. Metab. Eng. Commun. 10, e00119 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant no. 21908077 to C.Z.), the National Key R&D Program of China (grant no. 2021YFC2100203 to Y.Y.), the national first-class discipline program of Light Industry Technology and Engineering (grant no. LITE2018-24), the 111 Project (111-2-06) and the DOE Joint BioEnergy Institute (https://www.jbei.org), and funded by the US Department of Energy, Office of Science, Office of Biological, and Environmental Research through contract no DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

C.Z. conceived the study. C.Z. and X.L. designed the study, performed the experiments and data processing, and analysed the data. Z.B., J.D.K., J.N. and Y.C. supervised the project. E.E.K.B. performed the 13C-labelled experiments and analysed the data. S.W. conducted scanning electron microscopy experiment. Y.W. was involved in constructing some of the plasmids needed for the study. C.Z. and X.L. wrote the manuscript. J.D.K., G.L. and Y.L. revised the manuscript. Y.Y., Y.S. and G.W. contributed to the review, editing and final approval of the manuscript. They provided valuable insights and suggestions to improve the quality of the research paper.

Corresponding authors

Correspondence to Jens Nielsen, Jay D. Keasling, Yun Chen or Zhonghu Bai.

Ethics declarations

Competing interests

J.D.K. has financial interests in Amyris, Ansa Biotechnologies, Apertor Pharma, Berkeley Yeast, Cyklos Materials, Demetrix, Lygos, Napigen, ResVita Bio, and Zero Acre Farms. None of these companies work in the field explored in this study. All other authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Elke Nevoigt and the other, anonymous, reviewer for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–6, Notes 1–4 and Methods.

Reporting Summary

Supplementary Data

Source data for Supplemetary Figs. 4–24

Source data

Source Data Fig. 1

Statistical Source Data for Fig. 1.

Source Data Fig. 2

Statistical Source Data for Fig. 2.

Source Data Fig. 3

Statistical Source Data for Fig. 3.

Source Data Fig. 4

Statistical Source Data for Fig. 4.

Source Data Fig. 5

Statistical Source Data for Fig. 5.

Source Data Fig. 6

Statistical Source Data for Fig. 6.

Source Data Fig. 7

Statistical Source Data for Fig. 7.

Source Data Fig. 8

Statistical Source Data for Fig. 8.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, C., Li, X., Lan, G. et al. Reprogramming methanol utilization pathways to convert Saccharomyces cerevisiae to a synthetic methylotroph. Nat Catal 6, 435–450 (2023). https://doi.org/10.1038/s41929-023-00957-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00957-w

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research