Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Stereoselective conjugate cyanation of enals by combining photoredox and organocatalysis

Abstract

Precise control over the selectivity of a reaction is a fundamental target. While great advances have been obtained in achieving stereocontrol, the selective manipulation of functional groups within a substrate (chemoselectivity) is still a challenge. The cyanation of aldehydes offers an illustrative example: the 1,2-addition of nucleophilic cyanide to the aldehydic group was one of the first examples of a stereoselective catalytic process. By contrast, the conjugate cyanation of linear α,β-unsaturated aldehydes has remained elusive, even in a racemic variant. The main difficulty lies in achieving 1,4-chemoselectivity over the preferred cyanide 1,2-addition. Here, we report an asymmetric catalytic method to achieve the exclusive conjugate cyanation of enals. The synergistic action of a chiral organocatalyst with a visible-light-activated photoredox catalyst promotes the single-electron reduction of enals, inducing a formal inversion of polarity. The resulting chiral radical, being nucleophilic in character, is then intercepted by an electrophilic cyanide source with perfect 1,4-chemoselectivity and good stereocontrol.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Asymmetric catalytic cyanation of aldehydes and their unsaturated counterparts.
Fig. 2: Initial explorations and mechanistic proposal.
Fig. 3: Organocatalytic asymmetric conjugate cyanation of enals.
Fig. 4: Generality of the umpolung strategy of enals and mechanistic considerations.

Similar content being viewed by others

Data availability

Materials and methods, experimental procedures, useful information, mechanistic studies, 1H NMR spectra, 13C NMR spectra and mass spectrometry data are available in Supplementary Information. Raw data are available from the corresponding author on reasonable request. Crystallographic data for the acylated derivatives of compounds 3d and 7e have been deposited with the Cambridge Crystallographic Data Centre, accession numbers CCDC 2197381 and 2197380, respectively.

References

  1. Kurono, N. & Ohkuma, T. Catalytic asymmetric cyanation reactions. ACS Catal. 6, 989–1023 (2016).

    Article  CAS  Google Scholar 

  2. Reetz, M. T., Kunisch, F. & Heitmann, P. Chiral Lewis acids for enantioselective C–C bond formation. Tetrahedron Lett. 27, 4721–4724 (1986).

    Article  CAS  Google Scholar 

  3. Zuend, S. J., Coughlin, M. P., Lalonde, M. P. & Jacobsen, E. N. Scalable catalytic asymmetric Strecker syntheses of unnatural α-amino acids. Nature 461, 968–970 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhou, H. et al. Organocatalytic stereoselective cyanosilylation of small ketones. Nature 605, 84–89 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Gregory, R. J. Cyanohydrins in nature and the laboratory: biology, preparations, and synthetic applications. Chem. Rev. 99, 3649–3682 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Zeng, X.-P., Sun, J.-C., Liu, C.-, Ji, C.-B. & Peng, Y.-Y. Catalytic asymmetric cyanation reactions of aldehydes and ketones in total synthesis. Adv. Synth. Catal. 361, 3281–3305 (2019).

    Article  CAS  Google Scholar 

  7. Rosenthaler, L. Durch enzyme bewirkte asymmetrische synthesen. Biochem. Z. 14, 238–253 (1908).

    CAS  Google Scholar 

  8. Kagan, H. B. in Comprehensive Asymmetric Catalysis, Vol. 1 (eds Jacobsen, E. N. et al.) 4–22 (Springer-Verlag, 1999).

  9. Bredig, G. & Fiske, P. S. Beiträge zur chemischen physiologie und pathologie. Biochem. Z. 46, 7–23 (1912).

  10. Sammis, G. M. & Jacobsen, E. N. Highly enantioselective, catalytic conjugate addition of cyanide to α,β-unsaturated imides. J. Am. Chem. Soc. 125, 4442–4443 (2003).

    Article  CAS  PubMed  Google Scholar 

  11. Sammis, G. M., Danjo, H. & Jacobsen, E. N. Cooperative dual catalysis: application to the highly enantioselective conjugate cyanation of unsaturated imides. J. Am. Chem. Soc. 126, 9928–9929 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Tanaka, Y., Kanai, M. & Shibasaki, M. A catalytic enantioselective conjugate addition of cyanide to enones. J. Am. Chem. Soc. 130, 6072–6073 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka, Y., Kanai, M. & Shibasaki, M. Catalytic enantioselective construction of β-quaternary carbons via a conjugate addition of cyanide to β,β-disubstituted α,β-unsaturated carbonyl compounds. J. Am. Chem. Soc. 132, 8862–8863 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Provencher, B. A., Bartelson, K. J., Liu, Y., Foxman, B. M. & Deng, L. Structural study-guided development of versatile phase-transfer catalysts for asymmetric conjugate additions of cyanide. Angew. Chem. Int. Ed. 50, 10565–10569 (2011).

    Article  CAS  Google Scholar 

  15. Ito, Y., Kato, H., Imai, H. & Saegusa, T. A novel conjugate hydrocyanation with TiCl4-tert-butyl isocyanide. J. Am. Chem. Soc. 104, 6449–6450 (1982).

    Article  CAS  Google Scholar 

  16. Jansen, B. J. M., Sengers, H. H. W. J. M., Bos, H. J. Y. & de Groot, A. A new stereoselective approach for the total synthesis of (±)-isotadeonal, (±)-polygodial, (±)-warburganal, and (±)-muzigadial. J. Org. Chem. 53, 855–859 (1988).

    Article  CAS  Google Scholar 

  17. Nagata, W. & Yoshioka, M. in 25th Organic Reactions (eds Dauben, W. G. et al.) 255–476 (John Wiley & Sons, 1977).

  18. Prelog, V. & Wilhelm, M. Untersuchungen über asymmetrische synthesen VI. Der reaktionsmechanismus und der sterische verlauf der asymmetrischen cyanhydrin-synthese. Helv. Chim. Acta 37, 1634–1660 (1954).

  19. Hayashi, M., Miyamoto, Y., Inoue, T. & Oguni, N. Enantioselective trimethylsilylcyanation of some aldehydes catalyzed by chiral Schiff base-titanium alkoxide complexes. J. Org. Chem. 58, 1515–1522 (1993).

    Article  CAS  Google Scholar 

  20. Hamashima, Y., Sawada, D., Kanai, M. & Shibasaki, M. A new bifunctional asymmetric catalysis: an efficient catalytic asymmetric cyanosilylation of aldehydes. J. Am. Chem. Soc. 121, 2641–2642 (1999).

    Article  CAS  Google Scholar 

  21. Shenvi, R. A., O’Malley, D. P. & Baran, P. S. Chemoselectivity: the mother of invention in total synthesis. Acc. Chem. Res. 42, 530–541 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lelais, G. & MacMillan, D. W. C. Modern strategies in organic catalysis: the advent and development of iminium activation. Aldrichimica Acta 39, 79–87 (2006).

    CAS  Google Scholar 

  23. Pirnot, M. T., Rankic, D. A., Martin, D. B. C. & MacMillan, D. W. C. Photoredox activation for the direct β-arylation of ketones and aldehydes. Science 339, 1593–1596 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Terrett, J. A., Clift, M. D. & MacMillan, D. W. C. Direct β-alkylation of aldehydes via photoredox organocatalysis. J. Am. Chem. Soc. 136, 6858–6861 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seebach, D. Methods of reactivity umpolung. Angew. Chem. Int. Ed. 18, 239–258 (1979).

    Article  Google Scholar 

  26. Barton, D. H. R., Jaszberenyl, J. C. & Theodorakis, E. A. The invention of radical reactions. Part XXIII new reactions: nitrile and thiocyanate transfer to carbon radicals from sulfonyl cyanides and sulfonyl isothiocyanates. Tetrahedron 48, 2613–2626 (1992).

    Article  CAS  Google Scholar 

  27. Gaspar, B. & Carreira, E. M. Mild cobalt-catalyzed hydrocyanation of olefins with tosyl cyanide. Angew. Chem. Int. Ed. 46, 4519–4522 (2007).

    Article  CAS  Google Scholar 

  28. Ren, R., Wu, Z., Xu, Y. & Zhu, C. C–C bond-forming strategy by manganese-catalyzed oxidative ring-opening cyanation and ethynylation of cyclobutanol derivatives. Angew. Chem. Int. Ed. 55, 2866–2869 (2016).

    Article  CAS  Google Scholar 

  29. Shang, T.-Y. et al. Recent advances of 1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene (4-CzIPN) in photocatalytic transformations. Chem. Commun. 55, 5408–5419 (2019).

    Article  CAS  Google Scholar 

  30. Stradins, J. et al. Special features of the electrochemical oxidation of substituted 4-carboxy-1,4-dihydropyridines. Chem. Heterocycl. Compd. 36, 1177–1184 (2000).

    Article  CAS  Google Scholar 

  31. Silvi, M., Verrier, C., Rey, Y. P., Buzzetti, L. & Melchiorre, P. Visible-light excitation of iminium ions enables the enantioselective catalytic β-alkylation of enals. Nat. Chem. 9, 868–873 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Yang, Y. W., Hechavarria Fonseca, M. T. H. & List, B. A metal-free transfer hydrogenation: organocatalytic conjugate reduction of α,β-unsaturated aldehydes. Angew. Chem. Int. Ed. 43, 6660–6662 (2004).

    Article  Google Scholar 

  33. Suresh, R., Massad, I. & Marek, I. Stereoselective tandem iridium-catalyzed alkene isomerization-Cope rearrangement of ω-diene epoxides: efficient access to acyclic 1,6-dicarbonyl compounds. Chem. Sci. 12, 9328–9332 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hopkinson, M., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Chiang, P.-C., Kaeobamrung, J. & Bode, J. W. Enantioselective, cyclopentene-forming annulations via NHC-catalyzed benzoin−oxy-Cope reactions. J. Am. Chem. Soc. 129, 3520–3521 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Cardinal-David, B., Raup, D. E. A. & Scheidt, K. A. Cooperative N-heterocyclic carbene/Lewis acid catalysis for highly stereoselective annulation reactions with homoenolates. J. Am. Chem. Soc. 132, 5345–5347 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Huang, X. et al. Combining the catalytic enantioselective reaction of visible-light-generated radicals with a byproduct utilization system. Chem. Sci. 8, 7126–7313 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Ministry for Science and Innovation AEI/10.13039/501100011033 (CEX2019-000925-S) and Agencia Estatal de Investigación (PID2019-106278GB-I00). M.B. thanks the Austrian Science Foundation (FWF, J4603-N) for an Erwin-Schrödinger postdoctoral fellowship. Y.B. thanks the Swiss National Science Foundation (P2BSP2_200098) for a postdoctoral fellowship. D.M. thanks the European Union for a Horizon 2020 Marie Skłodowska-Curie Fellowship (H2020-MSCA-IF-2019 894795). T.H.-F.W. thanks the Government of Catalonia for an FI Fellowship (2021FI−B00304). We thank P. Capurro for preliminary investigations, M. Martinez and J. Benet for X-ray crystallographic analysis and M. Giménez and C. Rivero for assistance with ozonolysis and hydrogenation experiments.

Author information

Authors and Affiliations

Authors

Contributions

M.B., Y.B. and T.H.-F.W. developed the reaction, investigated the substrate scope and studied the reaction mechanism. D.M. first observed the reactivity and performed the initial screening. All authors contributed to the experimental design and the interpretation of data. P.M. conceived and supervised the project. M.B., Y.B. and P.M. directed the project. M.B. and P.M. wrote the paper with input from all authors.

Corresponding author

Correspondence to Paolo Melchiorre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1, Methods and References.

Supplementary Data 1

Crystallographic data of acylated derivative of compound 3d.

Supplementary Data 2

Crystallographic data of acylated derivative of compound 7e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berger, M., Ma, D., Baumgartner, Y. et al. Stereoselective conjugate cyanation of enals by combining photoredox and organocatalysis. Nat Catal 6, 332–338 (2023). https://doi.org/10.1038/s41929-023-00939-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-023-00939-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing