Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mechanistic and structural characterization of an iridium-containing cytochrome reveals kinetically relevant cofactor dynamics

Abstract

Artificial metalloenzymes (ArMs), which contain non-native, typically synthetic, metal cofactors, are a flourishing class of biocatalyst for unnatural reactions. Although the number of these reactions is rapidly increasing, multi-faceted mechanistic studies of ArMs comprising structural, kinetic, computational and cofactor binding data to reveal detailed mechanistic information on the effects of the protein scaffold on the structure and reactivity of ArMs are more limited. Here we report the structure of an unnatural P450 analogue using X-ray diffraction. We also report the kinetic analysis of its reaction, catalyst activation during an induction period, and the origins of the stereoselectivity for the cyclopropanation of a terpene catalysed by the iridium-containing P450 variant (Ir(Me)–CYP119). Our data reveal a mechanism initiated by the flip of the cofactor from an inactive to an active conformation. This change in conformation is followed by thousands of turnovers occurring by rate-determining formation of an iridium–carbene intermediate, thereby highlighting the influence of cofactor dynamics within a single active site on an ArM-catalysed reaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The structural details of Ir(Me)–CYP119.
Fig. 2: Potential kinetic mechanisms of cyclopropanation catalysed by Ir(Me)–CYP119.
Fig. 3: Kinetic data on the cyclopropanation of carvone with EDA catalysed by Ir(Me)–CYP119.
Fig. 4: Putative mechanism for cyclopropanation involving a flip of the cofactor to generate the active catalyst.
Fig. 5: Kinetics of cofactor and ligand binding to apo-CYP119 and Ir(Me)–CYP119.
Fig. 6: Proposed mechanism of cyclopropanation catalysed by Ir(Me)–CYP119.
Fig. 7: DFT calculations of cyclopropanation and MD simulations of Ir(Me)–CYP119.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factors for Ir(Me)–CYP119 have been deposited in the PDB with the PDB code 7UOR. The data on gas evolution that support the findings of this study are accessible through Dryad (https://doi.org/10.6078/D10Q6S). The other relevant kinetics data supporting the findings of this study are available within the Supplementary Information.

References

  1. Davis, H. J. & Ward, T. R. Artificial metalloenzymes: challenges and opportunities. ACS Cent. Sci. 5, 1120–1136 (2019).

    Article  CAS  Google Scholar 

  2. Schwizer, F. et al. Artificial metalloenzymes: reaction scope and optimization strategies. Chem. Rev. 118, 142–231 (2018).

    Article  CAS  Google Scholar 

  3. Dydio, P. et al. An artificial metalloenzyme with the kinetics of native enzymes. Science 354, 102–106 (2016).

    Article  CAS  Google Scholar 

  4. Hyster Todd, K., Knörr, L., Ward Thomas, R. & Rovis, T. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C–H activation. Science 338, 500–503 (2012).

    Article  CAS  Google Scholar 

  5. Jeschek, M. et al. Directed evolution of artificial metalloenzymes for in vivo metathesis. Nature 537, 661–665 (2016).

    Article  CAS  Google Scholar 

  6. Oohora, K. et al. Catalytic cyclopropanation by myoglobin reconstituted with iron porphycene: acceleration of catalysis due to rapid formation of the carbene species. J. Am. Chem. Soc. 139, 17265–17268 (2017).

    Article  CAS  Google Scholar 

  7. Wolf, M. W., Vargas, D. A. & Lehnert, N. Engineering of RuMb: toward a green catalyst for carbene insertion reactions. Inorg. Chem. 56, 5623–5635 (2017).

    Article  CAS  Google Scholar 

  8. Alonso-Cotchico, L. et al. Integrated computational study of the Cu-catalyzed hydration of alkenes in water solvent and into the context of an artificial metallohydratase. ACS Catal. 9, 4616–4626 (2019).

    Article  CAS  Google Scholar 

  9. Bhagi-Damodaran, A., Petrik, I. D., Marshall, N. M., Robinson, H. & Lu, Y. Systematic tuning of heme redox potentials and its effects on O2 reduction rates in a designed oxidase in myoglobin. J. Am. Chem. Soc. 136, 11882–11885 (2014).

    Article  CAS  Google Scholar 

  10. Bhagi-Damodaran, A. et al. Heme redox potentials hold the key to reactivity differences between nitric oxide reductase and heme-copper oxidase. Proc. Natl Acad. Sci. USA 115, 6195–6200 (2018).

    Article  Google Scholar 

  11. Christoffel, F. et al. Design and evolution of chimeric streptavidin for protein-enabled dual gold catalysis. Nat. Catal. 4, 643–653 (2021).

    Article  CAS  Google Scholar 

  12. Collot, J., Humbert, N., Skander, M., Klein, G. & Ward, T. R. Artificial metalloenzymes for enantioselective catalysis: the phenomenon of protein accelerated catalysis. J. Organomet. Chem. 689, 4868–4871 (2004).

    Article  CAS  Google Scholar 

  13. Dürrenberger, M. et al. Artificial transfer hydrogenases for the enantioselective reduction of cyclic imines. Angew. Chem. Int. Ed. 50, 3026–3029 (2011).

    Article  Google Scholar 

  14. Ke, Z., Abe, S., Ueno, T. & Morokuma, K. Catalytic mechanism in artificial metalloenzyme: QM/MM study of phenylacetylene polymerization by rhodium complex encapsulated in apo-ferritin. J. Am. Chem. Soc. 134, 15418–15429 (2012).

    Article  CAS  Google Scholar 

  15. Muñoz Robles, V. et al. Toward the computational design of artificial metalloenzymes: from protein–ligand docking to multiscale approaches. ACS Catal. 5, 2469–2480 (2015).

    Article  Google Scholar 

  16. Robles, V. M. et al. Structural, kinetic, and docking studies of artificial imine reductases based on biotin–streptavidin technology: an induced lock-and-key hypothesis. J. Am. Chem. Soc. 136, 15676–15683 (2014).

    Article  CAS  Google Scholar 

  17. Stein, A. et al. A dual anchoring strategy for the directed evolution of improved artificial transfer hydrogenases based on carbonic anhydrase. ACS Cent. Sci. 7, 1874–1884 (2021).

    Article  CAS  Google Scholar 

  18. Upp, D. M. et al.Engineering dirhodium artificial metalloenzymes for diazo coupling cascade reactions. Angew. Chem. Int. Ed. 60, 23672–23677 (2021).

    Article  CAS  Google Scholar 

  19. Villarino, L. et al. Cofactor binding dynamics influence the catalytic activity and selectivity of an artificial metalloenzyme. ACS Catal. 10, 11783–11790 (2020).

    Article  CAS  Google Scholar 

  20. Yu, Y. et al. A designed metalloenzyme achieving the catalytic rate of a native enzyme. J. Am. Chem. Soc. 137, 11570–11573 (2015).

    Article  CAS  Google Scholar 

  21. Zubi, Y. S., Liu, B., Gu, Y., Sahoo, D. & Lewis, J. C. Controlling the optical and catalytic properties of artificial metalloenzyme photocatalysts using chemogenetic engineering. Chem. Sci. 13, 1459–1468 (2022).

    Article  CAS  Google Scholar 

  22. Hayashi, T. et al. Capture and characterization of a reactive haem–carbenoid complex in an artificial metalloenzyme. Nat. Catal. 1, 578–584 (2018).

    Article  CAS  Google Scholar 

  23. Carminati, D. M., Moore, E. J. & Fasan, R. in Methods in Enzymology Vol. 644 (ed. Tawfik, D. S.) 35–61 (Academic Press, 2020).

  24. Natoli, S. N. & Hartwig, J. F. Noble−metal substitution in hemoproteins: an emerging strategy for abiological catalysis. Acc. Chem. Res. 52, 326–335 (2019).

    Article  CAS  Google Scholar 

  25. Zhang, R. K., Huang, X. & Arnold, F. H. Selective CH bond functionalization with engineered heme proteins: new tools to generate complexity. Curr. Opin. Chem. Biol. 49, 67–75 (2019).

    Article  CAS  Google Scholar 

  26. Rabe, K. S., Kiko, K. & Niemeyer, C. M. Characterization of the peroxidase activity of CYP119, a thermostable P450 from Sulfolobus acidocaldarius. ChemBioChem 9, 420–425 (2008).

    Article  CAS  Google Scholar 

  27. Hayashi, T., Sano, Y. & Onoda, A. Generation of new artificial metalloproteins by cofactor modification of native hemoproteins. Isr. J. Chem. 55, 76–84 (2015).

    Article  CAS  Google Scholar 

  28. Moffat, K., Loe, R. S. & Hoffman, B. M. The structure of metmanganoglobin. J. Mol. Biol. 104, 669–685 (1976).

    Article  CAS  Google Scholar 

  29. Bushnell, G. W., Louie, G. V. & Brayer, G. D. High-resolution three-dimensional structure of horse heart cytochrome c. J. Mol. Biol. 214, 585–595 (1990).

    Article  CAS  Google Scholar 

  30. Pearson, A. R. et al. The crystal structure of cytochrome P460 of Nitrosomonas europaea reveals a novel cytochrome fold and heme−protein cross-link. Biochemistry 46, 8340–8349 (2007).

    Article  CAS  Google Scholar 

  31. Cedervall, P., Hooper, A. B. & Wilmot, C. M. Structural studies of hydroxylamine oxidoreductase reveal a unique heme cofactor and a previously unidentified interaction partner. Biochemistry 52, 6211–6218 (2013).

    Article  CAS  Google Scholar 

  32. Smith, M. A. & Lancaster, K. M. The eponymous cofactors in cytochrome P460s from ammonia-oxidizing bacteria are iron porphyrinoids whose macrocycles are dibasic. Biochemistry 57, 334–343 (2018).

    Article  CAS  Google Scholar 

  33. Tran, A.-T. T., Kalish, H., Balch, A. L. & La Mar, G. N. Solution 1H NMR investigation of the seating and rotational “hopping” of centrosymmetric etioheme-I in myoglobin: effect of globin origin and its oxidation/spin state on heme dynamics. J. Biol. Inorg. Chem. 5, 624–633 (2000).

    Article  CAS  Google Scholar 

  34. Ueno, T. et al. Crystal structures of artificial metalloproteins: tight binding of FeIII(Schiff-base) by mutation of Ala71 to Gly in apo-myoglobin. Inorg. Chem. 43, 2852–2858 (2004).

    Article  CAS  Google Scholar 

  35. Abe, S. et al. Design and structure analysis of artificial metalloproteins: selective coordination of his64 to copper complexes with square-planar structure in the apo-myoglobin scaffold. Inorg. Chem. 46, 5137–5139 (2007).

    Article  CAS  Google Scholar 

  36. Key, H. M. et al. Beyond iron: iridium-containing P450 enzymes for selective cyclopropanations of structurally diverse alkenes. ACS Cent. Sci. 3, 302–308 (2017).

    Article  CAS  Google Scholar 

  37. Gu, Y., Natoli, S. N., Liu, Z., Clark, D. S. & Hartwig, J. F. Site-selective functionalization of (sp3)C−H bonds catalyzed by artificial metalloenzymes containing an iridium-porphyrin cofactor. Angew. Chem. Int. Ed. 58, 13954–13960 (2019).

    Article  CAS  Google Scholar 

  38. Segel, I. H. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Wiley, 1975).

  39. Hargrove, M. S., Barrick, D. & Olson, J. S. The association rate constant for heme binding to globin is independent of protein structure. Biochemistry 35, 11293–11299 (1996).

    Article  CAS  Google Scholar 

  40. Hoops, S. et al. COPASI—a COmplex PAthway SImulator. Bioinformatics 22, 3067–3074 (2006).

    Article  CAS  Google Scholar 

  41. Deniau, C. et al. Thermodynamics of heme binding to the HasA(SM) hemophore: effect of mutations at three key residues for heme uptake. Biochemistry 42, 10627–10633 (2003).

    Article  CAS  Google Scholar 

  42. Yukl, E. T. et al. Kinetic and spectroscopic studies of hemin acquisition in the hemophore HasAp from Pseudomonas aeruginosa. Biochemistry 49, 6646–6654 (2010).

    Article  CAS  Google Scholar 

  43. Barik, A., Priyadarsini, K. I. & Mohan, H. Photophysical studies on binding of curcumin to bovine serum albumins. Photochem. Photobiol. 77, 597–603 (2003).

    Article  CAS  Google Scholar 

  44. Feng, X. Z., Lin, Z., Yang, L. J., Wang, C. & Bai, C. L. Investigation of the interaction between acridine orange and bovine serum albumin. Talanta 47, 1223–1229 (1998).

    Article  CAS  Google Scholar 

  45. Bhakta, M. N. & Wilks, A. The mechanism of heme transfer from the cytoplasmic heme binding protein PhuS to the ẟ-regioselective heme oxygenase of Pseudomonas aeruginosa. Biochemistry 45, 11642–11649 (2006).

    Article  CAS  Google Scholar 

  46. Penning, T. M. Single-molecule enzymology of steroid transforming enzymes: transient kinetic studies and what they tell us. J. Steroid Biochem. Mol. Biol. 161, 5–12 (2016).

    Article  CAS  Google Scholar 

  47. Owens, C. P., Du, J., Dawson, J. H. & Goulding, C. W. Characterization of heme ligation properties of Rv0203, a secreted heme binding protein involved in Mycobacterium tuberculosis heme uptake. Biochemistry 51, 1518–1531 (2012).

    Article  CAS  Google Scholar 

  48. Wittwer, M. et al. Engineering and emerging applications of artificial metalloenzymes with whole cells. Nat. Catal. 4, 814–827 (2021).

    Article  CAS  Google Scholar 

  49. Hollenberg, P. F. Mechanisms of cytochrome P450 and peroxidase-catalyzed xenobiotic metabolism. FASEB J. 6, 686–694 (1992).

    Article  CAS  Google Scholar 

  50. Meunier, B., de Visser, S. P. & Shaik, S. Mechanism of oxidation reactions catalyzed by cytochrome P450 enzymes. Chem. Rev. 104, 3947–3980 (2004).

    Article  CAS  Google Scholar 

  51. Hu, J., Allen, R., Rozinek, S. & Brancaleon, L. Experimental and computational characterization of photosensitized conformational effects mediated by protoporphyrin ligands on human serum albumin. Photochem. Photobiol. Sci. 16, 694–710 (2017).

    Article  CAS  Google Scholar 

  52. Boens, N. et al. Rational design, synthesis, and spectroscopic and photophysical properties of a visible-light-excitable, ratiometric, fluorescent near-neutral pH indicator based on BODIPY. Chem 17, 10924–10934 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

B.J.B., S.N.N. and J.F.H. acknowledge support from the Director, Office of Science, 271 US Department of Energy, under Contract No. DE-AC02-272 05CH1123. S.N.N. also thanks the NIH (F32-GM126652) and the Burroughs Wellcome fund (PDEP). K.N.H. thanks the National Institute of General Medical Sciences of the NIH (grant R01GM124480) for support. M.G.-B. acknowledges support from the Spanish Ministerio de Ciencia e Innovación (projects PID2019-111300GA-I00 and RyC2020-028628-I). The work conducted by the Joint BioEnergy Institute is supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under contract no. DE-AC02-05CH11231 between LBNL and the US Department of Energy. We would like to thank R. G. Bergman, F. D. Toste, J. Y. Wang and E. D. Kalkman for valuable discussions and suggestions. We would like to thank A. Quest for helpful insight on figures.

Author information

Authors and Affiliations

Authors

Contributions

B.J.B. and J.F.H. designed and B.J.B. conducted the chemical kinetics and fluorimetry experiments and analysed the data. D.B.H. assisted with protein expression and purification. S.N.N. and J.H.P. designed and conducted the protein crystallography experiments. J.H.P. and P.D.A. analysed the crystallographic data. B.J.B., D.S.C. and J.F.H. interpreted the experimental data and prepared the experimental portion of the manuscript and Supplementary Information. M.G.-B. and K.N.H. designed the computational studies and interpreted the data. M.G.-B. conducted the computations, analysed the data and prepared the computational section of the manuscript and Supplemenary Information. All authors contributed to discussions, commented on and edited the manuscript.

Corresponding author

Correspondence to John F. Hartwig.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–10 and Figs. 1–23.

Reporting Summary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloomer, B.J., Natoli, S.N., Garcia-Borràs, M. et al. Mechanistic and structural characterization of an iridium-containing cytochrome reveals kinetically relevant cofactor dynamics. Nat Catal 6, 39–51 (2023). https://doi.org/10.1038/s41929-022-00899-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00899-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing