Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2

Subjects

Abstract

Methanol manufacturing by CO2 electrolysis is a potential near-zero-emission route to carbon neutrality, but most of the previous studies in aqueous electrolytes have achieved poor methanol selectivity and yield. Inspired by hard–soft acid–base theory, we proposed that the CO2 electroreduction pathways towards methanol or methane could be switched by tuning the electron delocalization state of Cu catalytic sites. On the basis of this hypothesis, we have designed and synthesized a cuprous cyanamide (Cu2NCN) crystal in which isolated Cu(I) ions strongly conjugated with NCN2− exhibit highly delocalized electrons. Theoretical calculations showed that Cu2NCN substantially reduces the Cu–O interaction of the adsorbed *OCH3 intermediate so that it is weaker than the O–C interaction at the critical reaction bifurcation point of Cu‒*O‒CH3, thus switching the pathway to release *OCH3 and form methanol. The Cu2NCN catalyst exhibits one of the highest recorded CO2-to-CH3OH selectivities (70%) and an outstanding partial current density of −92.3 mA cm−2 in aqueous electrolyte, corresponding to a CH3OH electroproduction rate of 0.160 μmol s−1 cm−2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration of the CO2RR pathway.
Fig. 2: Structural characterizations of Cu2NCN.
Fig. 3: Band structure and reaction pathway analysis.
Fig. 4: Electrochemical CO2RR experiments on Cu2NCN.
Fig. 5: Theoretical calculations on the CO2RR mechanism.

Similar content being viewed by others

Data availability

The crystallographic data for Cu2NCN are available in the Cambridge Crystallographic Data Center (CCDC) database under accession code CCDC 2212820. The data can be obtained free of charge via http://www.ccdc.cam.ac.uk/data_request/cif and have been provided in Supplementary Data 1. The atomic coordinates of the optimized computational models and the key calculation parameters are provided in Supplementary Data 2. Other data that support the findings of this study are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Market Report Series: Renewables 2018 Analysis and Forecasts to 2023 (IEA, 2018).

  2. Xie, X., Wang, M. & Han, J. Assessment of fuel-cycle energy use and greenhouse gas emissions for Fischer–Tropsch diesel from coal and cellulosic biomass. Environ. Sci. Technol. 45, 3047–3053 (2011).

    Article  CAS  Google Scholar 

  3. Dieterich, V., Buttler, A., Hanel, A., Spliethoff, H. & Fendt, S. Power-to-liquid via synthesis of methanol, DME or Fischer–Tropsch fuels: a review. Energy Environ. Sci. 13, 3207–3252 (2020).

    Article  CAS  Google Scholar 

  4. Fang, J., Yu, G., Liu, L., Hu, S. & Chapin, F. S. III Climate change, human impacts, and carbon sequestration in China. Proc. Natl Acad. Sci. USA 115, 4015–4020 (2018).

    Article  CAS  Google Scholar 

  5. Artz, J. et al. Sustainable conversion of carbon dioxide: an integrated review of catalysis and life cycle assessment. Chem. Rev. 118, 434–504 (2018).

    Article  CAS  Google Scholar 

  6. Shin, H., Hansen, K. U. & Jiao, F. Techno-economic assessment of low-temperature carbon dioxide electrolysis. Nat. Sustain. 4, 911–919 (2021).

    Article  Google Scholar 

  7. Wang, Y. et al. Catalyst synthesis under CO2 electroreduction favours faceting and promotes renewable fuels electrosynthesis. Nat. Catal. 3, 98–106 (2020).

    Article  CAS  Google Scholar 

  8. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  9. Lv, X. et al. Electro-deficient Cu sites on Cu3Ag1 catalyst promoting CO2 electroreduction to alcohols. Adv. Energy Mater. 10, 2001987 (2020).

    Article  CAS  Google Scholar 

  10. Zhong, M. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 581, 178–183 (2020).

    Article  CAS  Google Scholar 

  11. Wang, Y. et al. Single-atomic Cu with multiple oxygen vacancies on ceria for electrocatalytic CO2 reduction to CH4. ACS Catal. 8, 7113–7119 (2018).

    Article  CAS  Google Scholar 

  12. Yang, H. P. et al. Scalable production of efficient single-atom copper decorated carbon membranes for CO2 electroreduction to methanol. J. Am. Chem. Soc. 141, 12717–12723 (2019).

    Article  CAS  Google Scholar 

  13. Cai, Y. et al. Insights on forming N,O-coordinated Cu single-atom catalysts for electrochemical reduction CO2 to methane. Nat. Commun. 12, 586 (2021).

    Article  CAS  Google Scholar 

  14. Zheng, T. et al. Copper-catalysed exclusive CO2 to pure formic acid conversion via single-atom alloying. Nat. Nanotechnol. 16, 1386–1393 (2021).

    Article  CAS  Google Scholar 

  15. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  Google Scholar 

  16. Kusama, S., Saito, T., Hashiba, H., Sakai, A. & Yotsuhashi, S. Crystalline copper(II) phthalocyanine catalysts for electrochemical reduction of carbon dioxide in aqueous media. ACS Catal. 7, 8382–8385 (2017).

    Article  CAS  Google Scholar 

  17. Zhang, W. et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd–O–Sn interfaces. Angew. Chem. Int. Ed. 57, 9475–9479 (2018).

    Article  CAS  Google Scholar 

  18. Liu, Y., Deng, D. & Bao, X. Catalysis for selected C1 chemistry. Chem 6, 2497–2514 (2020).

    Article  CAS  Google Scholar 

  19. Zhang, S. Z., Jing, X. C., Wang, Y. H. & Li, F. W. Towards carbon-neutral methanol production from carbon dioxide electroreduction. ChemNanoMat 7, 728–736 (2021).

    Article  Google Scholar 

  20. Navarro-Jaén, S. et al. Highlights and challenges in the selective reduction of carbon dioxide to methanol. Nat. Rev. Chem. 5, 564–579 (2021).

    Article  Google Scholar 

  21. Back, S., Kim, H. & Jung, Y. Selective heterogeneous CO2 electroreduction to methanol. ACS Catal. 5, 965–971 (2015).

    Article  CAS  Google Scholar 

  22. Zhao, Z. & Lu, G. Cu-based single-atom catalysts boost electroreduction of CO2 to CH3OH: first-principles predictions. J. Phys. Chem. C 123, 4380–4387 (2019).

    Article  CAS  Google Scholar 

  23. Yang, D. X. et al. Selective electroreduction of carbon dioxide to methanol on copper selenide nanocatalysts. Nat. Commun. 10, 677 (2019).

    Article  Google Scholar 

  24. Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

    Article  CAS  Google Scholar 

  25. Low, Q. H., Loo, N. W. X., Calle-Vallejo, F. & Yeo, B. S. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew. Chem. Int. Ed. 58, 2256–2260 (2019).

    Article  CAS  Google Scholar 

  26. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies 1st edn (CRC Press, 2007).

    Book  Google Scholar 

  27. Li, P. et al. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 13, 1965 (2022).

    Article  CAS  Google Scholar 

  28. Klopman, G. Chemical reactivity and the concept of charge- and frontier-controlled reactions. J. Am. Chem. Soc. 90, 223–234 (1968).

    Article  CAS  Google Scholar 

  29. Geerlings, P. & De Proft, F. HSAB principle: applications of its global and local forms in organic chemistry. Int. J. Quantum Chem. 80, 227–235 (2000).

    Article  CAS  Google Scholar 

  30. Crawford, P. & Hu, P. Reactivity of the 4d transition metals toward N hydrogenation and NH dissociation: a DFT-based HSAB analysis. J. Phys. Chem. B 110, 4157–4161 (2006).

    Article  CAS  Google Scholar 

  31. Xiang, D. et al. Ag(II)-mediated electrocatalytic ambient CH4 functionalization inspired by HSAB theory. Angew. Chem. Int. Edit. 60, 18152–18161 (2021).

    Article  CAS  Google Scholar 

  32. Roslova, M. et al. InsteaDMatic: towards cross-platform automated continuous rotation electron diffraction. J. Appl. Crystallogr. 53, 1217–1224 (2020).

    Article  CAS  Google Scholar 

  33. Guan, A. et al. Boosting CO2 electroreduction to CH4 via tuning neighboring single-copper sites. ACS Energy Lett. 5, 1044–1053 (2020).

    Article  CAS  Google Scholar 

  34. Alexander V., Naumkin, A. K.-V., Gaarenstroom, S. W. & Powell, C. J. NIST X-ray Photoelectron Spectroscopy Database (National Institute of Standards and Technology, 2012).

  35. Becker, M., Nuss, J. & Jansen, M. Synthese und charakterisierung von natriumcyanamid. Z. Anorg. Allg. Chem. 626, 2505–2508 (2000).

    Article  CAS  Google Scholar 

  36. Liu, X. et al. Synthesis, crystal structure, and properties of MnNCN, the first carbodiimide of a magnetic transition metal. Inorg. Chem. 44, 3001–3003 (2005).

    Article  CAS  Google Scholar 

  37. Zhao, W. et al. Controllable synthesis of silver cyanamide as a new semiconductor photocatalyst under visible-light irradiation. J. Mater. Chem. A 1, 7942–7948 (2013).

    Article  CAS  Google Scholar 

  38. Newville, M. Fundamentals of XAFS. Rev. Mineral. Geochem. 78, 33–74 (2014).

    Article  CAS  Google Scholar 

  39. Xu, Y. et al. Low coordination number copper catalysts for electrochemical CO2 methanation in a membrane electrode assembly. Nat. Commun. 12, 2932 (2021).

    Article  CAS  Google Scholar 

  40. Temirov, R., Soubatch, S., Luican, A. & Tautz, F. S. Free-electron-like dispersion in an organic monolayer film on a metal substrate. Nature 444, 350–353 (2006).

    Article  CAS  Google Scholar 

  41. Jovanovic, M. & Michl, J. Effect of conformation on electron localization and delocalization in infinite helical chains [X(CH3)2] infinity (X = Si, Ge, Sn, and Pb). J. Am. Chem. Soc. 141, 13101–13113 (2019).

    Article  CAS  Google Scholar 

  42. Parr, R. G. & Pearson, R. G. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105, 7512–7516 (1983).

    Article  CAS  Google Scholar 

  43. Matito, E. & Putz, M. V. New link between conceptual density functional theory and electron delocalization. J. Phys. Chem. A 115, 12459–12462 (2011).

    Article  CAS  Google Scholar 

  44. Herzog, A. et al. Operando investigation of Ag-decorated Cu2O nanocube catalysts with enhanced CO2 electroreduction toward liquid products. Angew. Chem. Int. Ed. 60, 7426–7435 (2021).

    Article  CAS  Google Scholar 

  45. Li, X., Wang, S., Li, L., Sun, Y. & Xie, Y. Progress and perspective for in situ studies of CO2 reduction. J. Am. Chem. Soc. 142, 9567–9581 (2020).

    CAS  Google Scholar 

  46. Ji, Y. et al. Selective CO-to-acetate electroreduction via intermediate adsorption tuning on ordered Cu–Pd sites. Nat. Catal. 5, 251–258 (2022).

    Article  CAS  Google Scholar 

  47. Wakerley, D. et al. Gas diffusion electrodes, reactor designs and key metrics of low-temperature CO2 electrolysers. Nat. Energy 7, 130–143 (2022).

    Article  CAS  Google Scholar 

  48. Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

    Article  CAS  Google Scholar 

  49. Wang, Y., Han, P., Lv, X., Zhang, L. & Zheng, G. Defect and interface engineering for aqueous electrocatalytic CO2 reduction. Joule 2, 2551–2582 (2018).

    Article  CAS  Google Scholar 

  50. Teh, W. J. et al. Toward efficient tandem electroreduction of CO2 to methanol using anodized titanium. ACS Catal. 11, 8467–8475 (2021).

    Article  CAS  Google Scholar 

  51. Yang, T., Willhammar, T., Xu, H., Zou, X. & Huang, Z. Single-crystal structure determination of nanosized metal–organic frameworks by three-dimensional electron diffraction. Nat. Protoc. 17, 2389–2413 (2022).

    Article  CAS  Google Scholar 

  52. Shang, L., Lv, X., Zhong, L., Li, S. & Zheng, G. Efficient CO2 electroreduction to ethanol by Cu3Sn catalyst. Small Methods 6, 2101334 (2022).

    Article  CAS  Google Scholar 

  53. Bardeen, J. & Shockley, W. Deformation potentials and mobilities in non-polar crystals. Phys. Rev. 80, 72–80 (1950).

    Article  CAS  Google Scholar 

  54. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Key Research and Development Program of China (2018YFA0209401) and the National Natural Science Foundation of China (22025502, 21975051, 92163117 and 52072389) for financial support. J.W. thanks the Program of Shanghai Academic Research Leader (20XD1424300). G.Z. thanks the Science and Technology Commission of Shanghai Municipality (21DZ1206800) and the Shanghai Municipal Education Commission (2019-01-07-00-07-E00045). F.H. thanks the Shanghai Science and Technology Innovation Action Plan (20DZ1204400). L.L. acknowledges the support of the Discovery Program by the Natural Sciences and Engineering Research Council Canada (NSERC, DG RGPIN-2020-06675). The XAS data reported in this paper were collected at the Canadian Light Source, a national research facility of the University of Saskatchewan, which is supported by the Canada Foundation for Innovation (CFI), the NSERC, the National Research Council (NRC), the Canadian Institutes of Health Research (CIHR), the Government of Saskatchewan and the University of Saskatchewan. Technical support from the beamline scientist M. Shakouri is gratefully acknowledged. The authors thank Z. Zhou for help with crystal structure determination, and Z. Zhan and Z. Chen for checking the descriptions of the delocalization-related physical concepts.

Author information

Authors and Affiliations

Authors

Contributions

F.H., G.Z. and J.W. proposed and supervised the project. S.K. and X.L. designed the experiments. S.K., X.L., X.W., Z. Liu, B.J., D.S. and A.G. performed the material syntheses, electrochemical experiments and structural characterizations. X.L., Z. Li and C.Y. performed the DFT calculations. S.K. and X.L. performed the in situ Raman experiments. L.L. collected the XAS data and X.L. analysed the data. F.H., G.Z. and J.W. acquired funding support for this project. G.Z., S.K. and X.L. wrote the manuscript. All the authors discussed, commented on and revised the manuscript.

Corresponding authors

Correspondence to Jiacheng Wang, Gengfeng Zheng or Fuqiang Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Xiaohui Liu, Lei Liu, Chuan-Xin He, Guoxiong Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1‒3, Figs. 1‒30 and Tables 1‒14.

Supplementary Data 1

Crystallographic data.

Supplementary Data 2

Computational data.

Source data

Source Data Fig. 2

Source data of XRD (Cu2NCN-XRD.txt) and 3D electron diffraction (Cu2NCN.hkl) data of Cu2NCN.

Source Data Fig. 4

Source data of the CO2RR performance in H-type cells (Fig. 4b) and MEA cells (Fig. 4c), and the CO2RR electrochemical stability (Fig. 4f).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, S., Lv, X., Wang, X. et al. Delocalization state-induced selective bond breaking for efficient methanol electrosynthesis from CO2. Nat Catal 6, 6–15 (2023). https://doi.org/10.1038/s41929-022-00887-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00887-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing