Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles

Abstract

A high dispersion of the active metal phase of transition metals on oxide supports is important when designing efficient heterogeneous catalysts. Besides nanoparticles, clusters and even single metal atoms can be attractive for a wide range of reactions. However, many industrially relevant catalytic transformations suffer from structure sensitivity, where reducing the size of the metal particles below a certain size substantially lowers catalytic performance. A case in point is the low activity of small cobalt nanoparticles in the hydrogenation of CO and CO2. Here we show how engineering of catalytic sites at the metal–oxide interface in cerium oxide–zirconium dioxide (ceria–zirconia)-supported cobalt can overcome this structure sensitivity. Few-atom cobalt clusters dispersed on 3 nm cobalt(II)-oxide particles stabilized by ceria–zirconia yielded a highly active CO2 methanation catalyst with a specific activity higher than that of larger particles under the same conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The influence of catalyst reduction temperature on structure sensitivity in CO2 methanation.
Fig. 2: Nature of the active sites.
Fig. 3: Structure sensitivity of CO2, CO and H2 activation.
Fig. 4: CO2 hydrogenation mechanism probed by transient IR spectroscopy.

Similar content being viewed by others

Data availability

All data are available from the corresponding author upon reasonable request. Coordinates of optimized structures used for DFT modelling are contained in Supplementary Data 1.

References

  1. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  2. Liu, L. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Somorjal, G. A. & Carrazza, J. Structure sensitivity of catalytic reactions. Ind. Eng. Chem. Fundam. 25, 63–69 (1986).

    Article  Google Scholar 

  4. Van Santen, R. A. Complementary structure sensitive and insensitive catalytic relationships. Acc. Chem. Res. 42, 57–66 (2009).

    Article  PubMed  Google Scholar 

  5. Honkala, K. et al. Ammonia synthesis from first-principles calculations. Science 307, 555–558 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Dahl, S. et al. Role of steps in N2 activation on Ru(0001). Phys. Rev. Lett. 83, 1814–1817 (1999).

    Article  Google Scholar 

  7. Bezemer, G. L. et al. Cobalt particle size effects in the Fischer–Tropsch reaction studied with carbon nanofiber supported catalysts. J. Am. Chem. Soc. 128, 3956–3964 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Vogt, C. et al. Unravelling structure sensitivity in CO2 hydrogenation over nickel. Nat. Catal. 1, 127–134 (2018).

    Article  CAS  Google Scholar 

  9. van den Berg, R. et al. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat. Commun. 7, 13057 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Crampton, A. S. et al. Structure sensitivity in the nonscalable regime explored via catalysed ethylene hydrogenation on supported platinum nanoclusters. Nat. Commun. 7, 10389 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vogt, C., Kranenborg, J., Monai, M. & Weckhuysen, B. M. Structure sensitivity in steam and dry methane reforming over nickel: activity and carbon formation. ACS Catal. 10, 1428–1438 (2020).

    Article  CAS  Google Scholar 

  12. Vogt, C., Monai, M., Kramer, G. J. & Weckhuysen, B. M. The renaissance of the Sabatier reaction and its applications on Earth and in space. Nat. Catal. 2, 188–197 (2019).

    Article  CAS  Google Scholar 

  13. den Breejen, J. P. et al. On the origin of the cobalt particle size effects in Fischer−Tropsch catalysis. J. Am. Chem. Soc. 131, 7197–7203 (2009).

    Article  Google Scholar 

  14. Parastaev, A. et al. Boosting CO2 hydrogenation via size-dependent metal–support interactions in cobalt/ceria-based catalysts. Nat. Catal. 3, 526–533 (2020).

    Article  CAS  Google Scholar 

  15. Cargnello, M. et al. Control of metal nanocrystal size reveals metal–support interface role for ceria catalysts. Science 341, 771–773 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. Ye, T. N. et al. Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst. Nature 583, 391–395 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  18. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 301, 935–938 (2003).

    Article  CAS  PubMed  Google Scholar 

  19. Zhai, Y. et al. Alkali-stabilized Pt–OHx species catalyze low-temperature water-gas shift reactions. Science 329, 1633–1636 (2010).

    Article  CAS  PubMed  Google Scholar 

  20. Melaet, G. et al. Evidence of highly active cobalt oxide catalyst for the Fischer–Tropsch synthesis and CO2 hydrogenation. J. Am. Chem. Soc. 136, 2260–2263 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, K. et al. Unraveling and optimizing the metal–metal oxide synergistic effect in a highly active Cox(CoO)1−x catalyst for CO2 hydrogenation. J. Energy Chem 53, 241–250 (2020).

    Article  Google Scholar 

  22. ten Have, I. C. et al. Uncovering the reaction mechanism behind CoO as active phase for CO2 hydrogenation. Nat. Commun. 13, 324 (2022).

  23. Shin, H. K., Nam, I. S., Lee, J. S., Chung, J. S. & Moon, S. H. Catalytic properties of partially reduced cobalt wire in CO hydrogenation. Korean J. Chem. Eng. 13, 54–59 (1996).

    Article  CAS  Google Scholar 

  24. Ra, E. C. et al. Recycling carbon dioxide through catalytic hydrogenation: recent key developments and perspectives. ACS Catal. 10, 11318–11345 (2020).

    Article  CAS  Google Scholar 

  25. Tang, H. et al. Classical strong metal–support interactions between gold nanoparticles and titanium dioxide. Sci. Adv. 3, e1700231 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Matsubu, J. C., Yang, V. N. & Christopher, P. Isolated metal active site concentration and stability control catalytic CO2 reduction selectivity. J. Am. Chem. Soc. 137, 3076–3084 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Cao, S. et al. High-loading single Pt atom sites [Pt–O(OH)x] catalyze the CO PROX reaction with high activity and selectivity at mild conditions. Sci. Adv. 6, 3809–3826 (2020).

    Article  Google Scholar 

  28. DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Weststrate, C. J., van de Loosdrecht, J. & Niemantsverdriet, J. W. Spectroscopic insights into cobalt-catalyzed Fischer–Tropsch synthesis: a review of the carbon monoxide interaction with single crystalline surfaces of cobalt. J. Catal. 342, 1–16 (2016).

    Article  CAS  Google Scholar 

  30. Wang, F. et al. Active site dependent reaction mechanism over Ru/CeO2 catalyst toward CO2 methanation. J. Am. Chem. Soc. 138, 6298–6305 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Aldana, P. A. U. et al. Catalytic CO2 valorization into CH4 on Ni-based ceria–zirconia. Reaction mechanism by operando IR spectroscopy. Catal. Today 215, 201–207 (2013).

    Article  CAS  Google Scholar 

  32. Lin, S. S.-Y., Daimon, H. & Ha, S. Y. Co/CeO2–ZrO2 catalysts prepared by impregnation and coprecipitation for ethanol steam reforming. Appl. Catal. A 366, 252–261 (2009).

    Article  CAS  Google Scholar 

  33. Vayssilov, G. N., Mihaylov, M., Petkov, P. S., Hadjiivanov, K. I. & Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: a combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 115, 23435–23454 (2011).

    Article  CAS  Google Scholar 

  34. Daturi, M. et al. Study of bulk and surface reduction by hydrogen of CexZr1xO2 mixed oxides followed by FTIR spectroscopy and magnetic balance. J. Phys. Chem. B 103, 4884–4891 (1999).

    Article  CAS  Google Scholar 

  35. Wang, X., Shi, H. & Szanyi, J. Controlling selectivities in CO2 reduction through mechanistic understanding. Nat. Commun. 8, 513 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tuxen, A. et al. Size-dependent dissociation of carbon monoxide on cobalt nanoparticles. J. Am. Chem. Soc. 135, 2273–2278 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Bowers, C. R. & Weitekamp, D. P. Parahydrogen and synthesis allow dramatically enhanced nuclear alignment. J. Am. Chem. Soc. 109, 5541–5542 (1987).

    Article  CAS  Google Scholar 

  38. Corma, A., Salnikov, O. G., Barskiy, D. A., Kovtunov, K. V. & Koptyug, I. V. Single-atom gold catalysis in the context of developments in parahydrogen-induced polarization. Chemistry 21, 7012–7015 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Pokochueva, E. V., Burueva, D. B., Salnikov, O. G. & Koptyug, I. V. Heterogeneous catalysis and parahydrogen-induced polarization. ChemPhysChem 22, 1421–1440 (2021).

    Article  CAS  PubMed  Google Scholar 

  40. Kovtunov, K. V. et al. Catalytic hydrogenation with parahydrogen: a bridge from homogeneous to heterogeneous catalysis. Pure Appl. Chem. 92, 1029–1046 (2020).

    Article  CAS  Google Scholar 

  41. Galhardo, T. S. et al. Optimizing active sites for high CO selectivity during CO2 hydrogenation over supported nickel catalysts. J. Am. Chem. Soc. 143, 4268–4280 (2021).

    Article  CAS  PubMed  Google Scholar 

  42. Yuan, Q. et al. Ordered mesoporous Ce1−xZrxO2 solid solutions with crystalline walls. J. Am. Chem. Soc. 129, 6698–6699 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Altantzis, T. et al. Three-dimensional quantification of the facet evolution of Pt nanoparticles in a variable gaseous environment. Nano Lett. 19, 477–481 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Artiglia, L. et al. Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 8, 102–108 (2017).

    Article  CAS  PubMed  Google Scholar 

  45. Skála, T., Šutara, F., Prince, K. C. & Matolín, V. Cerium oxide stoichiometry alteration via Sn deposition: influence of temperature. J. Electron Spectros. Relat. Phenomena 169, 20–25 (2009).

    Article  Google Scholar 

  46. Stadnichenko, A. I. et al. Study of active surface centers of Pt/CeO2 catalysts prepared using radio-frequency plasma sputtering technique. Surf. Sci. 679, 273–283 (2019).

    Article  CAS  Google Scholar 

  47. Kosinov, N. et al. Confined carbon mediating dehydroaromatization of methane over Mo/ZSM-5. Angew. Chem. Int. Ed. 57, 1016–1020 (2018).

    Article  CAS  Google Scholar 

  48. Pravica, M. G. & Weitekamp, D. P. Net NMR alignment by adiabatic transport of parahydrogen addition products to high magnetic field. Chem. Phys. Lett. 145, 255–258 (1988).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  Google Scholar 

  50. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  Google Scholar 

  51. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  52. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  PubMed  Google Scholar 

  53. Park, K. W. & Kolpak, A. M. Understanding photocatalytic overall water splitting on CoO nanoparticles: effects of facets, surface stoichiometry, and the CoO/water interface. J. Catal. 365, 115–124 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Applied and Engineering Sciences division of the Netherlands Organization for Scientific Research through the Alliander (now Qirion) Perspective programme on Plasma Conversion of CO2. We acknowledge Diamond Light Source for time on beamline B18 under proposal no. SP20715-1. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 823717 – ESTEEM3. S.B. acknowledges support from the European Research Council (ERC Consolidator Grant no. 815128 REALNANO) and T.A. acknowledges funding from the University of Antwerp Research fund (BOF). A.B. received funding from the European Union under grant agreement no. 823717 – ESTEEM3. The authors acknowledge funding through the Hercules grant (FWO, University of Antwerp) no. I003218N, ‘Infrastructure for imaging nanoscale processes in gas/vapour or liquid environments’. I.V.K., D.B.B. and E.V.P. acknowledge the Russian Ministry of Science and Higher Education (contract no. 075-15-2021-580) for financial support with parahydrogen-based studies. Experiments using synchrotron radiation XPS were performed at the CIRCE beamline at ALBA Synchrotron with the collaboration of ALBA staff. F. Oropeza Palacio and R. C. J. van de Poll are acknowledged for help with RPES measurements.

Author information

Authors and Affiliations

Authors

Contributions

A.P. synthesized and characterized the set of ceria–zirconia samples (TPR, XRD and CO chemisorption and IR spectroscopy). A.P. and E.H.O. performed catalytic measurements. V.M., A.P. and N.K. performed in situ NAP-XPS and operando XAS measurements and interpreted the results. A.J.F.H. performed TEM measurements with an in situ holder. T.F.K. performed quasi-in situ XPS. J.F.M.S. and J.J.C.S. wrote the MATLAB script for rapid-scan FTIR measurements. A.P. and E.U. performed H2–D2 exchange experiments. I.V.K., D.B.B. and E.V.P. performed and interpreted experiments with parahydrogen. T.A., P.L., A.B., S.B., A.P. and N.K. performed and interpreted in situ STEM–EELS experiments. A.P., V.M., N.K. and E.J.M.H. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Emiel J. M. Hensen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Jochen Lauterbach, Clifford Bowers and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–88, Notes 1–12, Tables 1–11, equation 1 and references.

Supplementary Data

Coordinates of optimized structures used for DFT modelling.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parastaev, A., Muravev, V., Osta, E.H. et al. Breaking structure sensitivity in CO2 hydrogenation by tuning metal–oxide interfaces in supported cobalt nanoparticles. Nat Catal 5, 1051–1060 (2022). https://doi.org/10.1038/s41929-022-00874-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-022-00874-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing