Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2

Abstract

The oxidative dehydrogenation of propane using CO2 (CO2-ODP) is a promising technique for high-yield propylene production and CO2 utilization. Unfortunately the efficiency of existing catalysts is limited, and therefore, developing a highly efficient catalyst for CO2-ODP is of great importance for the chemical industry. Here we report a Pt–Co–In ternary nanoalloy on CeO2 that has a (Pt1−xCox)2In3 pseudo-binary alloy structure and exhibits very high catalytic activity, C3H6 selectivity, stability and CO2 utilization efficiency at 550 °C. Alloying platinum with indium and cobalt significantly improves the C3H6 selectivity and CO2 reduction ability, respectively. The cobalt species provide a high density of states near the Fermi level, which lowers the energy barrier of CO2 reduction. The stability of the catalyst is greatly enhanced by combining the strong CO2 activation ability of the alloy with the oxygen releasing ability of the CeO2 support, which facilitates Mars–van Krevelen-type coke combustion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of Pt–Co–In/CeO2.
Fig. 2: Catalytic performance of Pt–Co–In/CeO2 in the CO2-ODP.
Fig. 3: Effect of the catalyst support and TPSR on the coked catalysts.
Fig. 4: DFT calculations and reaction mechanism.

Similar content being viewed by others

Data availability

Atomic coordinates of the optimized computational models are provided as Supplementary Data 1 with this paper. Other data that support the findings of this study can be found in the article and the Supplementary Information; this information is also available from the corresponding author upon request.

References

  1. Amghizar, I., Vandewalle, L. A., Van Geem, K. M. & Marin, G. B. New trends in olefin production. Engineering 3, 171–178 (2017).

    Article  CAS  Google Scholar 

  2. Sattler, J. J. H. B., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Bhasin, M. M., McCain, J. H., Vora, B. V., Imai, T. & Pujadó, P. R. Dehydrogenation and oxydehydrogenation of paraffins to olefins. Appl. Catal. A 221, 397–419 (2001).

    Article  CAS  Google Scholar 

  4. Wang, S. & Zhu, Z. H. Catalytic conversion of alkanes to olefins by carbon dioxide oxidative dehydrogenation—a review. Energy Fuels 18, 1126–1139 (2004).

    Article  CAS  Google Scholar 

  5. Atanga, M. A., Rezaei, F., Jawad, A., Fitch, M. & Rownaghi, A. A. Oxidative dehydrogenation of propane to propylene with carbon dioxide. Appl. Catal. B 220, 429–445 (2018).

    Article  CAS  Google Scholar 

  6. Ansari, M. B. & Park, S. E. Carbon dioxide utilization as a soft oxidant and promoter in catalysis. Energy Environ. Sci. 5, 9419–9437 (2012).

    Article  CAS  Google Scholar 

  7. Gomez, E. et al. Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts. Nat. Commun. 9, 1398 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Ruthwik, N., Kavya, D., Shadab, A., Lingaiah, N. & Sumana, C. Thermodynamic analysis of chemical looping combustion integrated oxidative dehydrogenation of propane to propylene with CO2. Chem. Eng. Process. 153, 107959 (2020).

    Article  CAS  Google Scholar 

  9. Farnaz, T. Z., Abbas, T., Khodayer, G. & Saeed, S. Thermodynamic equilibrium analysis of propane dehydrogenation with carbon dioxide and side reactions. Chem. Eng. Commun. 203, 557–565 (2016).

    Article  Google Scholar 

  10. Osaki, T. & Mori, T. Kinetics of the reverse-Boudouard reaction over supported nickel catalysts. React. Kinet. Catal. Lett. 89, 333–339 (2006).

    Article  CAS  Google Scholar 

  11. Jacobson, M. Z. Review of solutions to global warming, air pollution, and energy security. Energy Environ. Sci. 2, 148–173 (2009).

    Article  CAS  Google Scholar 

  12. Tollefson, J. World’s carbon emissions set to spike by 2% in 2017. Nature 551, 283–283 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Shishido, T., Shimamura, K., Teramura, K. & Tanaka, T. Role of CO2 in dehydrogenation of propane over Cr-based catalysts. Catal. Today 185, 151–156 (2012).

    Article  CAS  Google Scholar 

  14. Botavina, M. A. et al. Towards efficient catalysts for the oxidative dehydrogenation of propane in the presence of CO2: Cr/SiO2 systems prepared by direct hydrothermal synthesis. Catal. Sci. Technol. 6, 840–850 (2016).

    Article  CAS  Google Scholar 

  15. Xu, B., Zheng, B., Hua, W., Yue, Y. & Gao, Z. Support effect in dehydrogenation of propane in the presence of CO2 over supported gallium oxide catalysts. J. Catal. 239, 470–477 (2006).

    Article  CAS  Google Scholar 

  16. Chen, M. et al. Study in support effect of In2O3/MOx (M = Al, Si, Zr) catalysts for dehydrogenation of propane in the presence of CO2. Appl. Catal. A 407, 20–28 (2011).

    Article  CAS  Google Scholar 

  17. Nowicka, E. et al. Elucidating the role of CO2 in the soft oxidative dehydrogenation of propane over ceria-based catalysts. ACS Catal. 8, 3454–3468 (2018).

    Article  CAS  Google Scholar 

  18. Baek, J., Yun, H. J., Yun, D., Choi, Y. & Yi, J. Preparation of highly dispersed chromium oxide catalysts supported on mesoporous silica for the oxidative dehydrogenation of propane using CO2: insight into the nature of catalytically active chromium sites. ACS Catal. 2, 1893–1903 (2012).

    Article  CAS  Google Scholar 

  19. Wang, H. M., Chen, Y., Yan, X., Lang, W. Z. & Guo, Y. J. Cr doped mesoporous silica spheres for propane dehydrogenation in the presence of CO2: effect of Cr adding time in sol–gel process. Microporous Mesoporous Mater. 284, 69–77 (2019).

    Article  CAS  Google Scholar 

  20. Jeon, J., Kon, K., Toyao, T., Shimizu, K. & Furukawa, S. Design of Pd-based pseudo-binary alloy catalysts for highly active and selective NO reduction. Chem. Sci. 10, 4148–4162 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Nakaya, Y., Miyazaki, M., Yamazoe, S., Shimizu, K. & Furukawa, S. Active, Selective, and durable catalyst for alkane dehydrogenation based on a well-designed trimetallic alloy. ACS Catal. 10, 5163–5172 (2020).

    Article  CAS  Google Scholar 

  22. Nakaya, Y., Hirayama, J., Yamazoe, S., Shimizu, K. & Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 11, 2838 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sun, G. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 9, 4454 (2018).

  24. Ryoo, R. et al. Rare-earth–platinum alloy nanoparticles in mesoporous zeolite for catalysis. Nature 585, 221–224 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Liu, B. & Greeley, J. Decomposition pathways of glycerol via C–H, O–H, and C–C bond scission on Pt(111): a density functional theory study. J. Phys. Chem. C 115, 19702–19709 (2011).

    Article  CAS  Google Scholar 

  26. Álvarez, A. et al. CO2 activation over catalytic surfaces. ChemPhysChem 18, 3135–3141 (2017).

    Article  PubMed  Google Scholar 

  27. Studt, F. et al. Discovery of a Ni–Ga catalyst for carbon dioxide reduction to methanol. Nat. Chem. 6, 320–324 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Furukawa, S. & Komatsu, T. Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis. ACS Catal. 7, 735–765 (2017).

    Article  CAS  Google Scholar 

  29. Pakhare, D. & Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 43, 7813–7837 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Kopač, D., Likozar, B. & Huš, M. How size matters: electronic, cooperative, and geometric effect in perovskite-supported copper catalysts for CO2 reduction. ACS Catal. 10, 4092–4102 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang, W. et al. Size dependence of Pt catalysts for propane dehydrogenation: from atomically dispersed to nanoparticles. ACS Catal. 10, 12932–12942 (2020).

    Article  CAS  Google Scholar 

  32. Zhu, J. et al. Size-dependent reaction mechanism and kinetics for propane dehydrogenation over Pt catalysts. ACS Catal. 5, 6310–6319 (2015).

    Article  CAS  Google Scholar 

  33. Lin, C. F., Mohney, S. E. & Chang, Y. A. Phase equilibria in the Pt–In–P system. J. Appl. Phys. 74, 4398–4402 (1993).

  34. Barbosa, R. L. et al. Methanol steam reforming over indium-promoted Pt/Al2O3 catalyst: nature of the active surface. J. Phys. Chem. C 117, 6143–6150 (2013).

    Article  CAS  Google Scholar 

  35. Nguyen, T. D., Zheng, W., Celik, F. E. & Tsilomelekis, G. T. CO2-assisted ethane oxidative dehydrogenation over MoOx catalysts supported on reducible CeO2–TiO2. Catal. Sci. Technol. 11, 5791–5801 (2021).

  36. Melaet, G. et al. Evidence of highly active cobalt oxide catalyst for the Fischer–Tropsch synthesis and CO2 hydrogenation. J. Am. Chem. Soc. 136, 2260–2263 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. Wang, L., Liu, H., Chen, Y. & Yang, S. Reverse water–gas shift reaction over co-precipitated Co–CeO2 catalysts: effect of Co content on selectivity and carbon formation. Int. J. Hydrog. Energy 42, 3682–3689 (2017).

    Article  CAS  Google Scholar 

  38. Wang, Y., Furukawa, S. & Yan, N. Identification of an active NiCu catalyst for nitrile synthesis from alcohol. ACS Catal. 9, 6681–6691 (2019).

    Article  Google Scholar 

  39. Hammer, B. & Norskov, J. K. Why gold is the noblest of all the metals. Nature 376, 238–240 (1995).

    Article  CAS  Google Scholar 

  40. LiBretto, N. J., Yang, C., Ren, Y., Zhang, G. & Miller, J. T. Identification of surface structures in Pt3Cr intermetallic nanocatalysts. Chem. Mater. 31, 1597–1609 (2019).

    Article  CAS  Google Scholar 

  41. Ankudinov, A. & Ravel, B. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

  42. Segall, M. D. et al. First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys. Condens. Matter 14, 2717–2744 (2002).

    Article  CAS  Google Scholar 

  43. Hammer, B., Hansen, L. B. & Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised Perdew–Burke–Ernzerhof functionals. Phys. Rev. B 59, 7413–7421 (1999).

    Article  Google Scholar 

  44. Tkatchenko, A. & Scheffler, M. Accurate molecular van der Waals interactions from ground-state electron density and free-atom reference data. Phys. Rev. Lett. 102, 6–9 (2009).

    Article  Google Scholar 

  45. Hu, K. et al. Boosting electrochemical water splitting: via ternary NiMoCo hybrid nanowire arrays. J. Mater. Chem. A 7, 2156–2164 (2019).

    Article  CAS  Google Scholar 

  46. Jana, R. & Peter, S. C. One-pot solvothermal synthesis of ordered intermetallic Pt2In3 as stable and efficient electrocatalyst towards direct alcohol fuel cell application. J. Solid State Chem. 242, 133–139 (2016).

    Article  CAS  Google Scholar 

  47. Ye, J., Liu, C. & Ge, Q. A DFT study of methanol dehydrogenation on the PdIn(110) surface. Phys. Chem. Chem. Phys. 14, 16660–16667 (2012).

    Article  CAS  PubMed  Google Scholar 

  48. Fischer, T. H. & Almlöf, J. General methods for geometry and wave function optimization. J. Phys. Chem. 96, 9768–9774 (1992).

    Article  CAS  Google Scholar 

  49. Govind, N., Petersen, M., Fitzgerald, G., King-Smith, D. & Andzelm, J. A generalized synchronous transit method for transition state location. Comput. Mater. Sci. 28, 250–258 (2003).

    Article  CAS  Google Scholar 

  50. Halgren, T. A. & Lipscomb, W. N. The synchronous-transit method for determining reaction pathways and locating molecular transition states. Chem. Phys. Lett. 49, 225–232 (1977).

    Article  CAS  Google Scholar 

  51. Wang, J. et al. A highly selective and stable ZnO–ZrO2 solid solution catalyst for CO2 hydrogenation to methanol. Sci. Adv. 3, 1–11 (2017).

    Article  Google Scholar 

  52. Schoonheydt, R. A. & Weckhuysen, B. M. Physisorption and chemisorption of alkanes and alkenes in H-FAU: a combined ab initio–statistical thermodynamics study. Phys. Chem. Chem. Phys. 11, 2794–2798 (2009).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (grant numbers 17H01341 to K.S., 17H04965 to S.F. and 20H02517 to S.F.), MEXT project Element Strategy Initiative (JPMXP0112101003 to K.S.), JST CREST (JPMJCR17J3 to K.S.), JST PRESTO (JPMJPR19T7 to S.F.) and the Collaborative Research Projects of Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology to S.F. The XAFS analysis was performed with the approval of JASRI (number 2019B1620 and 2019B1469 to S.F.). We thank the technical staff of the Research Institute for Electronic Science, Y. Nakasaka and K.W. Ting, Hokkaido University for help with HAADF-STEM, Raman and XPS analyses, respectively. Computation time was provided by the supercomputer systems in the Institute for Chemical Research, Kyoto University.

Author information

Authors and Affiliations

Authors

Contributions

S.F. and F.X. designed the research and co-wrote the manuscript in discussion. F.X. performed all the experimetal work. Y.N. contributed to the XAFS and XPS studies. S.F. conducted all the computational and kinetic studies. S.Y. contributed to the free-energy calculation. S.F., F.X., Y.N., S.Y. and K.S. discussed the data and commented on the manuscript.

Corresponding author

Correspondence to Shinya Furukawa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Catalysis thanks Feng-Shou Xiao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–39, Tables 1–9 and Note 1.

Supplementary Data 1

Atomic coordinates of optimized computational models.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, F., Nakaya, Y., Yasumura, S. et al. Ternary platinum–cobalt–indium nanoalloy on ceria as a highly efficient catalyst for the oxidative dehydrogenation of propane using CO2. Nat Catal 5, 55–65 (2022). https://doi.org/10.1038/s41929-021-00730-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00730-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing