Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-throughput activity screening and sorting of single catalyst particles with a droplet microreactor using dielectrophoresis

Abstract

Solid catalysts are complex, multi-component materials with large interparticle heterogeneities that hamper statistically relevant in-depth catalyst characterization. Here we introduce an automated high-throughput screening and sorting method for catalyst particles. A droplet microreactor was developed for fluorescence-activated sorting of catalyst particles using dielectrophoresis. Fluid catalytic cracking (FCC) particles stained with styrene derivatives were analysed with the analytical platform developed and sorted based on catalytic activity. Highly active and low-to-moderately active catalyst particles were sorted using 4-fluorostyrene or 4-methoxystyrene as probe, respectively. FCC particles were encapsulated in liquid droplets, where fluorescent FCC particles activated the dielectrophoretic sorter and were sorted within 200 ms. Post-sorting analysis of 4-fluorostyrene-stained and sorted catalyst particles was done using fluorescence microscopy and micro-X-ray fluorescence. This confirmed that the sorted particles were the least deactivated and showed the highest acidity, while non-sorted particles contained more metal poisons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The FCC process, sorting principle and microreactor design.
Fig. 2: Windows of operation and sorting thresholds for 4-fluorostyrene- and 4-methoxystyrene-stained FCC particles.
Fig. 3: The post-sorting analysis principle of 4-fluorosytrene-stained FCC particles, including data.

Similar content being viewed by others

Data availability

Supplementary Videos 110 are included within the Supplementary information. Supplementary Videos 1129 can be found in a data repository at https://doi.org/10.24435/materialscloud:em-r4. All data not added to the Supplementary Information or repository are available from the corresponding author on reasonable request.

References

  1. Boudart, M. in Handbook of Heterogeneous Catalysis 2nd edn (eds Ertl, G. et al.) Ch. 1 (Wiley-VCH, 2008).

  2. Hagen, J. Industrial Catalysis (Wiley-VCH, 2015).

  3. Weckhuysen, B. M. Chemical imaging of spatial heterogeneities in catalytic solids at different length and time scales. Angew. Chem. Int. Ed. 48, 4910–4943 (2009).

    Article  CAS  Google Scholar 

  4. Plessers, E. et al. Resolving interparticle heterogeneities in composition and hydrogenation performance between individual supported silver on silica catalysts. ACS Catal. 5, 6690–6695 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Buurmans, I. L. C. & Weckhuysen, B. M. Space and time as monitored by spectroscopy. Nat. Chem. 4, 873–886 (2012).

    Article  CAS  PubMed  Google Scholar 

  6. Sivaramakrishnan, M., Kothandan, R., Govindarajan, D. K., Meganathan, Y. & Kandaswamy, K. Active microfluidic systems for cell sorting and separation. Curr. Opin. Biomed. Eng. 13, 60–68 (2020).

    Article  Google Scholar 

  7. Whitesides, G. M. The origins and the future of microfluidics. Nature 442, 368–373 (2006).

    Article  CAS  Google Scholar 

  8. Auroux, P. A., Iossifidis, D., Reyes, D. R. & Manz, A. Micro total analysis systems. 2. Analytical standard operations and applications. Anal. Chem. 74, 2637–2652 (2002).

    Article  CAS  PubMed  Google Scholar 

  9. Reyes, D. R., Iossifidis, D., Auroux, P. A. & Manz, A. Micro total analysis systems. 1. Introduction, theory, and technology. Anal. Chem. 74, 2623–2636 (2002).

    Article  CAS  Google Scholar 

  10. Jensen, K. F. Microchemical systems: status, challenges, and opportunities. AIChE J. 45, 2051–2054 (1999).

    Article  CAS  Google Scholar 

  11. Yue, J., Schouten, J. C. & Nijhuis, T. A. Integration of microreactors with spectroscopic detection for online reaction monitoring and catalyst characterization. Ind. Eng. Chem. Res. 51, 14583–14609 (2012).

    Article  CAS  Google Scholar 

  12. Pattekar, A. V. & Kothare, M. V. A microreactor for hydrogen production in micro fuel cell applications. J. Microelectromech. Syst. 13, 7–18 (2004).

    Article  CAS  Google Scholar 

  13. Pennell, T. et al. Microfluidic chip to produce temperature jumps for electrophysiology. Anal. Chem. 80, 2447–2451 (2008).

    Article  CAS  PubMed  Google Scholar 

  14. Lin, J. L., Wu, M. H., Kuo, C. Y., Lee, K. D. & Shen, Y. L. Application of indium tin oxide (ITO)-based microheater chip with uniform thermal distribution for perfusion cell culture outside a cell incubator. Biomed. Microdevices 12, 389–398 (2010).

    Article  PubMed  Google Scholar 

  15. Crews, N., Wittwer, C., Palais, R. & Gale, B. Product differentiation during continuous-flow thermal gradient PCR. Lab Chip 8, 919–924 (2008).

    Article  CAS  PubMed  Google Scholar 

  16. Phatthanakun, R. et al. Fabrication and control of thin-film aluminum microheater and nickel temperature sensor. in Annual International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology 14–17 (IEEE ECTI-CON, 2011).

  17. Miralles, V., Huerre, A., Malloggi, F. & Jullien, M.-C. A review of heating and temperature control in microfluidic systems: techniques and applications. Diagnostics 3, 33–67 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chang, W.-Y. & Hsihe, Y.-S. Multilayer microheater based on glass substrate using MEMS technology. Microelectron. Eng. 149, 25–30 (2016).

    Article  CAS  Google Scholar 

  19. Tiggelaar, R. M. et al. Fabrication of a high-temperature microreactor with integrated heater and sensor patterns on an ultrathin silicon membrane. Sens. Actuators A 119, 196–205 (2005).

    Article  CAS  Google Scholar 

  20. Tiggelaar, R. M. et al. Thermal and mechanical analysis of a microreactor for high temperature catalytic gas phase reactions. Sens. Actuators A 112, 267–277 (2004).

    Article  CAS  Google Scholar 

  21. Tiggelaar, R. M. et al. Fabrication and characterization of high-temperature microreactors with thin film heater and sensor patterns in silicon nitride tubes. Lab Chip 5, 326–336 (2005).

    Article  CAS  PubMed  Google Scholar 

  22. Casadevall, X. Droplet microfluidics: recent developments and future applications. Chem. Commun. 47, 1936–1942 (2011).

    Article  Google Scholar 

  23. Kaminski, S. T. S. & Garstecki, P. As featured in: multistep chemical and biological assays. Chem. Soc. Rev. 46, 6210–6226 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Teh, S., Lin, R., Hung, L. & Lee, A. P. Droplet microfluidics. Lab Chip 8, 198–220 (2008).

    Article  CAS  PubMed  Google Scholar 

  25. Wen, N. et al. Development of droplet microfluidics enabling high-throughput single-cell analysis. Molecules 21, 881 (2016).

  26. Baret, J. C. et al. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9, 1850–1858 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Cerqueira, H. S., Caeiro, G., Costa, L. & Ribeiro, F. R. Deactivation of FCC catalysts. J. Mol. Catal. A 292, 1–13 (2008).

    Article  CAS  Google Scholar 

  28. Vogt, E. T. C. & Weckhuysen, B. M. Fluid catalytic cracking: recent developments on the grand old lady of zeolite catalysis. Chem. Soc. Rev. 44, 7342–7370 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Letzsch, W. in Handbook of Petroleum Processing Vol. 1 (ed. Treese, S. A.) 262–312 (Springer, 2015).

  30. Sadeghbeigi, R. Fluid Catalytic Cracking Handbook (Elsevier, 2012).

  31. Biswas, J. & Maxwell, I. E. Recent process- and catalyst-related developments in fluid catalytic cracking. Appl. Catal. 63, 197–258 (1990).

    Article  CAS  Google Scholar 

  32. Komvokis, V., Tan, L. X. L., Clough, M., Pan, S. S. & Yilmaz, B. in Zeolites in Sustainable Chemistry (eds Xiao, F.-S. & Meng, X.) 271–297 (Springer, 2016).

  33. Wise, A. M. et al. Nanoscale chemical imaging of an individual catalyst particle with soft X‑ray ptychography. ACS Catal. 6, 2178–2181 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. de Winter, D. A. M., Meirer, F. & Weckhuysen, B. M. FIB-SEM tomography probes the mesoscale pore space of an individual catalytic cracking particle. ACS Catal. 6, 3158–3167 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Mitchell, B. I. R. Metal contamination of cracking catalysts. Ind. Eng. Chem. Prod. Res. Dev. 19, 209–213 (1980).

    Article  CAS  Google Scholar 

  36. Meirer, F. et al. Life and death of a single catalytic cracking particle. Sci. Adv. 1, e1400199 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Meirer, F. et al. Mapping metals incorporation of a whole single catalyst particle using element specific X-ray nanotomography. J. Am. Chem. Soc. 137, 102–105 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Meirer, F. et al. Agglutination of single catalyst particles during fluid catalytic cracking as observed by X-ray nanotomography. Chem. Commun. 51, 8097–8100 (2015).

    Article  CAS  Google Scholar 

  39. Kalirai, S., Boesenberg, U., Falkenberg, G., Meirer, F. & Weckhuysen, B. M. X-ray fluorescence tomography of aged fluid-catalytic-cracking catalyst particles reveals insight into metal deposition processes. ChemCatChem 7, 3674–3682 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Liu, Y., Meirer, F., Krest, C. M., Webb, S. & Weckhuysen, B. M. Relating structure and composition with accessibility of a single catalyst particle using correlative 3-dimensional micro-spectroscopy. Nat. Commun. 7, 12634 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ihli, J. et al. Localization and speciation of iron impurities within a fluid catalytic cracking catalyst. Angew. Chem. Int. Ed. 56, 14031–14035 (2017).

    Article  CAS  Google Scholar 

  42. Ihli, J. et al. A three-dimensional view of structural changes caused by deactivation of fluid catalytic cracking catalysts. Nat. Commun. 8, 809 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mathieu, Y., Corma, A., Echard, M. & Bories, M. Single and combined Fluidized Catalytic Cracking (FCC) catalyst deactivation by iron and calcium metal-organic contaminants. Appl. Catal. A 469, 451–465 (2014).

    Article  CAS  Google Scholar 

  44. Karreman, M. A. et al. Probing the different life stages of a fluid catalytic cracking particle with integrated laser and electron microscopy. Chem. Eur. J. 19, 3846–3859 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Buurmans, I. L. C. et al. Catalytic activity in individual cracking catalyst particles imaged throughout different life stages by selective staining. Nat. Chem. 3, 862–867 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Dyrkacz, G. R., Ruscic, L., Marshall, C. L. & Reagan, W. Separation and characterization of FCC catalysts using density gradient separation. Energy Fuels 71, 849–854 (2000).

    Google Scholar 

  47. Solsona, M. et al. Magnetophoretic sorting of single catalyst particles. Angew. Chem. Int. Ed. 57, 10589–10594 (2018).

    Article  CAS  Google Scholar 

  48. Gambino, M. et al. Nickel poisoning of a cracking catalyst unravelled by single particle X‐ray fluorescence‐diffraction-absorption tomography. Angew. Chem. Int. Ed. 59, 3922–3927 (2019).

    Article  Google Scholar 

  49. Aramburo, L. R. et al. Styrene oligomerization as a molecular probe reaction for Brønsted acidity at the nanoscale. Phys. Chem. Chem. Phys. 14, 6967–6973 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Stavitski, E., Kox, M. H. F. & Weckhuysen, B. M. Revealing shape selectivity and catalytic activity trends within the pores of H-ZSM-5 crystals by time- and space-resolved optical and fluorescence microspectroscopy. Chem. Eur. J. 13, 7057–7065 (2007).

    Article  CAS  PubMed  Google Scholar 

  51. Leamon, J. H., Link, D. R., Egholm, M. & Rothberg, J. M. Overview: methods and applications for droplet compartmentalization of biology. Nat. Methods 3, 541–543 (2006).

    Article  CAS  PubMed  Google Scholar 

  52. Wolff, A. et al. Integrating advanced functionality in a microfabricated high-throughput fluorescent-activated cell sorter. Lab Chip 3, 22–27 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Huh, D. et al. Gravity-driven microfluidic particle sorting device with hydrodynamic separation amplification. Anal. Chem. 79, 1369–1376 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xi, H.-D. et al. Active droplet sorting in microfluidics: a review. Lab Chip 17, 751–771 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Fiedler, S., Shirley, S. G., Schnelle, T. & Fuhr, G. Dielectrophoretic sorting of particles and cells in a microsystem. Anal. Chem. 70, 1909–1915 (1998).

    Article  CAS  PubMed  Google Scholar 

  56. Basu, A. S. Droplet morphometry and velocimetry (DMV): a video processing software for time-resolved, label-free tracking of droplet parameters. Lab Chip 13, 1892–1901 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Nieuwelink, A.-E. et al. Single particle essays to determine heterogeneities within fluid catalytic cracking catalysts. Chem. Eur. J. 26, 8546–8554 (2020).

    Article  CAS  PubMed  Google Scholar 

  58. Kerssens, M. M. et al. Photo-spectroscopy of mixtures of catalyst particles reveals their age and type. Faraday Discuss. 188, 69–79 (2016).

    Article  CAS  PubMed  Google Scholar 

  59. Agresti, J. J. et al. Ultra-high throughput screening in drop-based microfluidics for directed evolution. Proc. Natl Acad. Sci. USA 107, 4004–4009 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Van Den Brink, F. T. G. et al. A minaturized push–pull-perfusion probe for few-second sampling of neurotransmittors in the mouse brain. Lab Chip 19, 1332–1343 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Netherlands Center for Multiscale Catalytic Energy Conversion, an NWO gravitation programme funded by the Ministry of Education, Culture and Science of the government of the Netherlands. We thank L. I. Segerink and K. Groothuis-Oudshoorn (both University of Twente, UT) for help with SPSS analysis. We thank F. Meirer (Utrecht University, UU) for scientific discussions and help regarding µXRF data analysis. We thank T. Hartman (UU) for the graphical abstract.

Author information

Authors and Affiliations

Authors

Contributions

This work is based on a collaboration between the BIOS Lab on a Chip group (UT) and the Inorganic Chemistry and Catalysis group (UU). A.-E.N., J.C.V. and M.O. conceptualized the microreactor and proof-of-principle reaction used in this work and carried out experiments. J.C.V. developed and fabricated the microreactors with help from J.G.B. and R.M.T. A.-E.N. performed ex situ post-sorting analysis. A.v.d.B., M.O. and B.M.W. conceptualized the idea of using microreactor technology for catalyst screening.

Corresponding author

Correspondence to Bert M. Weckhuysen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14, Methods, Discussion, Tables 1–7 and Videos 1–29.

Supplementary Video 1

Illustrative video of fluorescence-based DEP sorting of catalyst particles.

Supplementary Video 2

Video showing droplet manipulation using a.c. DEP.

Supplementary Video 3

Video related to the sorting results in Supplementary Table 6.

Supplementary Video 4

Video related to the sorting results in Supplementary Table 6.

Supplementary Video 5

Video related to the sorting results in Supplementary Table 6.

Supplementary Video 6

Video related to the sorting results in Supplementary Table 6.

Supplementary Video 7

Video related to the sorting results in Supplementary Table 6.

Supplementary Video 8

Video related to the sorting results in Supplementary Table 6.

Supplementary Video 9

Video related to the sorting results in Supplementary Table 6.

Supplementary Video 10

Video related to the sorting results in Supplementary Table 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieuwelink, AE., Vollenbroek, J.C., Tiggelaar, R.M. et al. High-throughput activity screening and sorting of single catalyst particles with a droplet microreactor using dielectrophoresis. Nat Catal 4, 1070–1079 (2021). https://doi.org/10.1038/s41929-021-00718-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00718-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing