Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation

Abstract

Monolayer materials are endowed with an additional degree of freedom to modulate electronic structures and catalytic performances. Here, we report a direct synthesis of monolayer Ni(OH)2 on electrodes by in situ electrochemical conversion and a fundamental investigation of their catalytic activity. The monolayer structure greatly promotes hydrogen and oxygen release processes to produce dynamic active sites for the oxygen evolution reaction (OER) at a lower potential. Lattice doping with cobalt further tunes the electronic structure to reduce the overpotential. In situ experiments revealed Ni and Co valence state oscillation in NiCo hydroxides, which has been attributed to sequential dehydrogenation and deoxygenation processes, and fundamentally contributes to the dynamic generation of OER active sites. This study defines an in situ conversion process to yield monolayer layered double hydroxides (LDHs) and establishes a critical fundamental understanding of the origin of the active sites in monolayer LDHs for the OER.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic of the conversion from molecular crystal to monolayer hydroxide and structure characterization.
Fig. 2: Relationship between the valence states of Ni and the dehydrogenation of mono- and multilayer Ni(OH)2.
Fig. 3: Production and detection of in situ generated oxygen vacancies by the release of oxygen atoms.
Fig. 4: Promotion of OER activity induced by in situ generated Ov.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information. Additional data are available from the corresponding authors upon reasonable request.

References

  1. Mannix, A. J., Kiraly, B., Hersam, M. C. & Guisinger, N. P. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1, 0014 (2017).

    Article  CAS  Google Scholar 

  2. Coleman, J. N. et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science 331, 568–571 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Yu, Y. et al. High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ. Nature 575, 156–163 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    Article  CAS  PubMed  Google Scholar 

  5. Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  6. Duan, H. H. et al. Ultrathin rhodium nanosheets. Nat. Commun. 5, 3093 (2014).

    Article  PubMed  Google Scholar 

  7. Li, J. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 579, 368–374 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    Article  CAS  Google Scholar 

  9. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Article  CAS  PubMed  Google Scholar 

  10. Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    Article  CAS  PubMed  Google Scholar 

  11. Zhao, Y. et al. Layered-double-hydroxide nanosheets as efficient visible-light-driven photocatalysts for dinitrogen fixation. Adv. Mater. 29, 1703828 (2017).

    Article  Google Scholar 

  12. Luo, J. et al. Water photolysis at 12.3% efficiency via perovskite photovoltaics and earth-abundant catalysts. Science 345, 1593–1596 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Roger, I., Shipman, M. A. & Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 1, 0003 (2017).

    Article  CAS  Google Scholar 

  14. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  15. Gao, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 141, 3014–3023 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Hunter, B. M., Gray, H. B. & Müller, A. M. Earth-abundant heterogeneous water oxidation catalysts. Chem. Rev. 116, 14120–14136 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Hwang, J. et al. Perovskites in catalysis and electrocatalysis. Science 358, 751–756 (2017).

    Article  CAS  PubMed  Google Scholar 

  19. Holger, D. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    Article  Google Scholar 

  20. Nellist, M. R., Laskowski, F. A. L., Lin, F., Mills, T. J. & Boettcher, S. W. Semiconductor–electrocatalyst interfaces: theory, experiment, and applications in photoelectrochemical water splitting. Acc. Chem. Res. 49, 733–740 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Grimaud, A. et al. Activation of surface oxygen sites on an iridium-based model catalyst for the oxygen evolution reaction. Nat. Energy 2, 16189 (2016).

    Article  Google Scholar 

  22. Huang, Z. et al. Chemical and structural origin of lattice oxygen oxidation in Co–Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 4, 329–338 (2019).

    Article  CAS  Google Scholar 

  23. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. Roy, C. et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018).

    Article  CAS  Google Scholar 

  25. Yu, L. et al. Cu nanowires shelled with NiFe layered double hydroxide nanosheets as bifunctional electrocatalysts for overall water splitting. Energy Environ. Sci. 10, 1820–1827 (2017).

    Article  CAS  Google Scholar 

  26. Long, X., Wang, Z., Xiao, S., An, Y. & Yang, S. Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater. Today 19, 213–226 (2016).

    Article  CAS  Google Scholar 

  27. Zhou, Y. et al. Exceptional performance of hierarchical Ni–Fe (hydr)oxide@NiCu electrocatalysts for water splitting. Adv. Mater. 31, 1806769 (2019).

    Article  Google Scholar 

  28. Qiu, Z., Tai, C.-W., Niklasson, G. A. & Edvinsson, T. Direct observation of active catalyst surface phases and the effect of dynamic self-optimization in NiFe-layered double hydroxides for alkaline water splitting. Energy Environ. Sci. 12, 572–581 (2019).

    Article  CAS  Google Scholar 

  29. Yu, J., Wang, Q., O’Hare, D. & Sun, L. Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem. Soc. Rev. 46, 5950–5974 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Z. et al. Synthesis, anion exchange, and delamination of Co−Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies. J. Am. Chem. Soc. 128, 4872–4880 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Gao, S. et al. Ultrahigh energy density realized by a single-layer β-Co(OH)2 all-solid-state asymmetric supercapacitor. Angew. Chem. Int. Ed. 53, 12789–12793 (2014).

    Article  CAS  Google Scholar 

  32. Ida, S., Shiga, D., Koinuma, M. & Matsumoto, Y. Synthesis of hexagonal nickel hydroxide nanosheets by exfoliation of layered nickel hydroxide intercalated with dodecyl sulfate ions. J. Am. Chem. Soc. 130, 14038–14039 (2008).

    Article  CAS  PubMed  Google Scholar 

  33. Jin, H. et al. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 118, 6337–6408 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Zhao, Y. F. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 8, 1703585 (2018).

    Article  Google Scholar 

  35. Shao, Y. et al. Design and mechanisms of asymmetric supercapacitors. Chem. Rev. 118, 9233–9280 (2018).

    Article  CAS  PubMed  Google Scholar 

  36. Su, X. Z. et al. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: activation of oxygen atoms for oxygen evolution reaction. J. Am. Chem. Soc. 140, 11286–11292 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Zhao, S. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016).

    Article  CAS  Google Scholar 

  38. Capehart, T. W., Corrigan, D. A., Conell, R. S., Pandya, K. I. & Hoffman, R. W. In situ extended X‐ray absorption fine structure spectroscopy of thin‐film nickel hydroxide electrodes. Appl. Phys. Lett. 58, 865–867 (1991).

    Article  CAS  Google Scholar 

  39. Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149–154 (2017).

    Article  PubMed  Google Scholar 

  40. Fabbri, E. et al. Dynamic surface self-reconstruction is the key of highly active perovskite nano-electrocatalysts for water splitting. Nat. Mater. 16, 925–931 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Gong, M. et al. An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452–8455 (2013).

    Article  CAS  PubMed  Google Scholar 

  42. Song, F. & Hu, X. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 5, 4477 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. Fei, H. et al. General synthesis and definitive structural identification of Mn4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  44. Fan, K. et al. Nickel–vanadium monolayer double hydroxide for efficient electrochemical water oxidation. Nat. Commun. 7, 11981 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Nørskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    Article  Google Scholar 

  46. Li, Y.-F. & Selloni, A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx. ACS Catal. 4, 1148–1153 (2014).

    Article  CAS  Google Scholar 

  47. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  49. McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Ichiyanagi, Y. et al. X-ray absorption fine-structure study on the Ni(OH)2 monolayer nanoclusters. Chem. Phys. Lett. 379, 345–350 (2003).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  52. Chen, J., Wu, X. & Selloni, A. Electronic structure and bonding properties of cobalt oxide in the spinel structure. Phys. Rev. B 83, 245204 (2011).

    Article  Google Scholar 

  53. Tkalych, A. J., Zhuang, H. L. L. & Carter, E. A. A density functional + U assessment of oxygen evolution reaction mechanisms on β-NiOOH. ACS Catal. 7, 5329–5339 (2017).

    Article  CAS  Google Scholar 

  54. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The work performed at Beihang University was supported by the National Natural Science Foundation of China (51532001, 11974037, U1930402 and 52002010), the Beijing Natural Science Foundation (2194077) and the National Postdoctoral Program for Innovative Talents (BX20180020). We thank S. Zhang of the Shanghai Institute of Applied Physics for providing the standard XAFS data, and J. Zhang and L. Zheng of Beijing Synchrotron Radiation Facility for help with the in situ XAFS tests. We acknowledge the support of the NSRL (Beamlines MCD-A and MCD-B, Soochow Beamline for Energy Materials) in the XAS experiments. The computer resources of Tianhe-2 and Beihang HPC are both acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

J.K., L.-M.L. and L.G. designed and directed the study. J.K. and X.Q. conceived and performed the fabrications. Q.H. and L.-M.L. performed the first-principles calculations and analysed the results. X.G. and R.H. performed the spherical aberration-corrected TEM analyses. J.K., X.Q. and J.Z. participated in the characterization studies. All authors contributed to the discussions. J.K., Q.H., J.Z., C.W., L.L., X.D. and L.G. analysed the data and wrote the manuscript. All authors reviewed the paper.

Corresponding authors

Correspondence to Li-Min Liu or Lin Guo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Hong-Jie Peng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38, Discussions 1–3 and Table 1.

Supplementary Data

Optimized coordinates for the corresponding structures.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, J., Qiu, X., Hu, Q. et al. Valence oscillation and dynamic active sites in monolayer NiCo hydroxides for water oxidation. Nat Catal 4, 1050–1058 (2021). https://doi.org/10.1038/s41929-021-00715-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00715-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing