Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen

Subjects

A Publisher Correction to this article was published on 07 January 2022

This article has been updated

Abstract

Direct oxidation of methane to valuable chemicals is a great challenge as catalysts with both high activity and selectivity for the activation of inert C–H bonds are required. Here, we report the highly efficient and selective photo-oxidation of methane to ethane with dioxygen in a flow reactor using a Au nanoparticle (NP) loaded ZnO/TiO2 hybrid. An ethane production rate of over 5,000 μmol g−1 h−1 with 90% selectivity is achieved, which is more than one order of magnitude higher than the state-of-the-art photocatalytic systems. Detailed characterizations and theoretical studies show that the formation of heterojunctions between ZnO and TiO2 leads to enhanced photocatalytic activity, while maintaining high selectivity owing to the weak overoxidation ability of the main component ZnO. Moreover, the Au cocatalyst enables the facile desorption of methyl (CH3) species as CH3 radicals in the gas phase, thereby facilitating C2H6 formation and inhibiting overoxidation of CH4 to CO2.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural characterizations of catalysts.
Fig. 2: Photocatalytic OCM performance.
Fig. 3: Photocatalytic OCM performance under different conditions.
Fig. 4: Mechanistic studies of O2 activation.
Fig. 5: In situ DRIFT spectroscopy characterization.
Fig. 6: DFT calculations and proposed reaction mechanism for photocatalytic oxidation of CH4 with O2.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the article and Supplementary Information or from the corresponding authors on reasonable request. Source data are provided with this paper.

Change history

References

  1. Olivos-Suarez, A. I. et al. Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: challenges and opportunities. ACS Catal. 6, 2965–2981 (2016).

    Article  CAS  Google Scholar 

  2. Sattler, J. J., Ruiz-Martinez, J., Santillan-Jimenez, E. & Weckhuysen, B. M. Catalytic dehydrogenation of light alkanes on metals and metal oxides. Chem. Rev. 114, 10613–10653 (2014).

    Article  CAS  PubMed  Google Scholar 

  3. Schwach, P., Pan, X. & Bao, X. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects. Chem. Rev. 117, 8497–8520 (2017).

    Article  CAS  PubMed  Google Scholar 

  4. Grant, J. T., Venegas, J. M., McDermott, W. P. & Hermans, I. Aerobic oxidations of light alkanes over solid metal oxide catalysts. Chem. Rev. 118, 2769–2815 (2017).

    Article  PubMed  Google Scholar 

  5. Ravi, M., Ranocchiari, M. & van Bokhoven, J. A. The direct catalytic oxidation of methane to methanol—a critical assessment. Angew. Chem. Int. Ed. 56, 16464–16483 (2017).

    Article  CAS  Google Scholar 

  6. Ito, T. & Lunsford, J. H. Synthesis of ethylene and ethane by partial oxidation of methane over lithium-doped magnesium oxide. Nature 314, 721–722 (1985).

    Article  CAS  Google Scholar 

  7. Lunsford, J. H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. 34, 970–980 (1995).

    Article  CAS  Google Scholar 

  8. Wang, P., Zhao, G., Wang, Y. & Lu, Y. MnTiO3-driven low-temperature oxidative coupling of methane over TiO2-doped Mn2O3-Na2WO4/SiO2 catalyst. Sci. Adv. 3, e1603180 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Yuliati, L. & Yoshida, H. Photocatalytic conversion of methane. Chem. Soc. Rev. 37, 1592–1602 (2008).

    Article  CAS  PubMed  Google Scholar 

  10. Song, H., Meng, X., Wang, Z.-J., Liu, H. & Ye, J. Solar-energy-mediated methane conversion. Joule 3, 1606–1636 (2019).

    Article  CAS  Google Scholar 

  11. Xie, J. et al. Highly selective oxidation of methane to methanol at ambient conditions by titanium dioxide-supported iron species. Nat. Catal. 1, 889–896 (2018).

    Article  CAS  Google Scholar 

  12. Yuliati, L., Hamajima, T., Hattori, T. & Yoshida, H. Highly dispersed Ce(III) species on silica and alumina as new photocatalysts for non-oxidative direct methane coupling. Chem. Commun. 38, 4824–4826 (2005).

    Article  Google Scholar 

  13. Li, L. et al. Synergistic effect on the photoactivation of the methane C-H bond over Ga3+‐modified ETS‐10. Angew. Chem. Int. Ed. 51, 4702–4706 (2012).

    Article  CAS  Google Scholar 

  14. Li, L. et al. Efficient sunlight‐driven dehydrogenative coupling of methane to ethane over a Zn+‐modified zeolite. Angew. Chem. Int. Ed. 50, 8299–8303 (2011).

    Article  CAS  Google Scholar 

  15. Meng, L. et al. Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces. Energy Environ. Sci. 11, 294–298 (2018).

    Article  CAS  Google Scholar 

  16. Wu, S. et al. Ga-doped and Pt-loaded porous TiO2–SiO2 for photocatalytic nonoxidative coupling of methane. J. Am. Chem. Soc. 141, 6592–6600 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Mesters, C. A selection of recent advances in C1 chemistry. Annu. Rev. Chem. Biomol. 7, 223–238 (2016).

    Article  Google Scholar 

  18. Li, Z., Pan, X. & Yi, Z. Photocatalytic oxidation of methane over CuO-decorated ZnO nanocatalysts. J. Mater. Chem. A 7, 469–475 (2019).

    Article  Google Scholar 

  19. Chen, X. et al. Photocatalytic oxidation of methane over silver decorated zinc oxide nanocatalysts. Nat. Commun. 7, 12273 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yu, X., De Waele, V., Löfberg, A., Ordomsky, V. & Khodakov, A. Y. Selective photocatalytic conversion of methane into carbon monoxide over zinc-heteropolyacid-titania nanocomposites. Nat. Commun. 10, 700 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yu, X. et al. Stoichiometric methane conversion to ethane using photochemical looping at ambient temperature. Nat. Energy 5, 511–519 (2020).

    Article  CAS  Google Scholar 

  22. Li, X., Xie, J., Rao, H., Wang, C. & Tang, J. Platinum- and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem. Int. Ed. 59, 19702–19707 (2020).

    Article  CAS  Google Scholar 

  23. Song, H. et al. Direct and selective photocatalytic oxidation of CH4 to oxygenates with O2 on cocatalysts/ZnO at room temperature in water. J. Am. Chem. Soc. 141, 20507–20515 (2019).

    Article  CAS  PubMed  Google Scholar 

  24. Meng, X. et al. Photothermal conversion of CO2 into CH4 with H2 over Group VIII nanocatalysts: an alternative approach for solar fuel production. Angew. Chem. Int. Ed. 53, 11478–11482 (2014).

    Article  CAS  Google Scholar 

  25. Liu, N. et al. Auδ−–Ov–Ti3+ interfacial site: catalytic active center toward low-temperature water gas shift reaction. ACS Catal. 9, 2707–2717 (2019).

    Article  CAS  Google Scholar 

  26. Chen, Z. et al. Non-oxidative coupling of methane: N-type doping of niobium single atoms in TiO2-SiO2 induces electron localization. Angew. Chem. Int. Ed. 60, 11909–11909 (2021).

    Google Scholar 

  27. Wenbin, J. et al. Pd-Modified ZnO-Au enabling alkoxy intermediates formation and dehydrogenation for photocatalytic conversion of methane to ethylene. J. Am. Chem. Soc. 143, 269–278 (2021).

    Article  Google Scholar 

  28. Farrell, B. L., Igenegbai, V. O. & Linic, S. A viewpoint on direct methane conversion to ethane and ethylene using oxidative coupling on solid catalysts. ACS Catal. 6, 4340–4346 (2016).

    Article  CAS  Google Scholar 

  29. Kondratenko, E. V. et al. Methane conversion into different hydrocarbons or oxygenates: current status and future perspectives in catalyst development and reactor operation. Catal. Sci. Technol. 7, 366–381 (2017).

    Article  CAS  Google Scholar 

  30. Della Pina, C., Falletta, E., Prati, L. & Rossi, M. Selective oxidation using gold. Chem. Soc. Rev. 37, 2077–2095 (2008).

    Article  PubMed  Google Scholar 

  31. Iwamoto, M., Yoda, Y., Yamazoe, N. & Seiyama, T. Study of metal oxide catalysts by temperature programmed desorption. 4. Oxygen adsorption on various metal oxides. J. Phys. Chem. C 82, 2564–2570 (1978).

    Article  CAS  Google Scholar 

  32. Zhang, C., Li, Y., Wang, Y. & He, H. Sodium-promoted Pd/TiO2 for catalytic oxidation of formaldehyde at ambient temperature. Environ. Sci. Technol. 48, 5816–5822 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmann, M. R., Martin, S. T., Choi, W. & Bahnemann, D. W. Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995).

    Article  CAS  Google Scholar 

  34. Carter, E., Carley, A. F. & Murphy, D. M. Evidence for O2-radical stabilization at surface oxygen vacancies on polycrystalline TiO2. J. Phys. Chem. C 111, 10630–10638 (2007).

    Article  CAS  Google Scholar 

  35. Hao, Z. et al. In situ electron paramagnetic resonance (EPR) study of surface oxygen species on Au/ZnO catalyst for low-temperature carbon monoxide oxidation. Appl. Catal. A 213, 173–177 (2001).

    Article  CAS  Google Scholar 

  36. Qi, G. et al. Low-temperature reactivity of Zn+ ions confined in ZSM-5 zeolite toward carbon monoxide oxidation: insight from in situ DRIFT and ESR spectroscopy. J. Am. Chem. Soc. 135, 6762–6765 (2013).

    Article  CAS  PubMed  Google Scholar 

  37. Hayyan, M., Hashim, M. A. & AlNashef, I. M. Superoxide ion: generation and chemical implications. Chem. Rev. 116, 3029–3085 (2016).

    Article  CAS  PubMed  Google Scholar 

  38. Li, H., Li, J., Ai, Z., Jia, F. & Zhang, L. Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew. Chem. Int. Ed. 57, 122–138 (2018).

    Article  CAS  Google Scholar 

  39. Raskó, J., Kecskés, T. & Kiss, J. Formaldehyde formation in the interaction of HCOOH with Pt supported on TiO2. J. Catal. 224, 261–268 (2004).

    Article  Google Scholar 

  40. Nomikos, G. N., Panagiotopoulou, P., Kondarides, D. I. & Verykios, X. E. Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst. Appl. Catal. B 146, 249–257 (2014).

    Article  CAS  Google Scholar 

  41. Kecskés, T., Raskó, J. & Kiss, J. FTIR and mass spectrometric studies on the interaction of formaldehyde with TiO2 supported Pt and Au catalysts. Appl. Catal. A 273, 55–62 2004).

    Article  Google Scholar 

  42. Chen, T. et al. Mechanistic studies of photocatalytic reaction of methanol for hydrogen production on Pt/TiO2 by in situ Fourier transform IR and time-resolved IR spectroscopy. J. Phys. Chem. C 111, 8005–8014 (2007).

    Article  CAS  Google Scholar 

  43. Kang, L. et al. Photo-thermo catalytic oxidation over a TiO2-WO3-supported platinum catalyst. Angew. Chem. Int. Ed. 132, 13009–13016 (2020).

    Article  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  45. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  47. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  48. Harl, J., Schimka, L. & Kresse, G. Assessing the quality of the random phase approximation for lattice constants and atomization energies of solids. Phys. Rev. B 81, 115126–115143 (2010).

    Article  Google Scholar 

  49. Henkelman, G. & Jónsson, H. Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000).

    Article  CAS  Google Scholar 

  50. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work received partial financial support from JSPS KAKENHI grant number JP18H02065, Photo-excitonix Project in Hokkaido University, National Natural Science Foundation of China (grant nos. 21633004, 51872091, 21633015 and 11721404), Ministry of Science and Technology (grant no. 2018YFA0208700), Hundred Talents Program of Hebei Province (grant no. E2018050013) and State Scholarship Fund by China Scholarship Council (grant no. 201806240195).

Author information

Authors and Affiliations

Authors

Contributions

J.Y. supervised the research. H.S. conceived the ideas and wrote the paper. S.S. and H.S. performed catalyst synthesis, characterization and photocatalytic tests. L.L. conducted O2-TPD measurement. S.W. and H.H. conducted ESR measurement. K.P. conducted TEM measurement. Q.W. participated in DFT calculations. B.D. carried out DRIFT measurements. H.L. performed ATR-IR measurements. S.S., H.S. and J.Y. analysed the data. W.C., X.M., Q.L., Z.W., Y.W. and T.K. participated in the analysis of some results. All authors contribute to the discussion and revision of the paper.

Corresponding authors

Correspondence to Hui Song or Jinhua Ye.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Jinlin Long, Ana Belén Muñoz-García and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–8, Note 1 and References.

Supplementary Data

Models for the computational calculations.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, S., Song, H., Li, L. et al. A selective Au-ZnO/TiO2 hybrid photocatalyst for oxidative coupling of methane to ethane with dioxygen. Nat Catal 4, 1032–1042 (2021). https://doi.org/10.1038/s41929-021-00708-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00708-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing