Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

High-purity and high-concentration liquid fuels through CO2 electroreduction

Abstract

Liquid fuels generated from the electrochemical CO2 reduction reaction (CO2RR) are of particular interest due to their high energy densities and ease of storage and distribution. Unfortunately, they are typically formed in low concentrations and mixed with impurities due to the current limitations of traditional CO2 electrolysers as well as CO2RR catalysts. In this Perspective, we emphasize that while the declining renewable electricity price can greatly lower the formation cost of liquid fuels, the downstream purification process will add an extra layer of cost that greatly harms their economic feasibility for large-scale applications. Different strategies in reactor engineering and catalyst improvement are proposed to realize the direct and continuous generation of high-purity and high-concentration liquid fuels from CO2RR electrolysers, allowing this electrochemical route to become more competitive compared with the traditional chemical engineering industry in the future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview of CO2RR technology and downstream liquid product separation.
Fig. 2: CO2RR electrocatalysts for liquid fuels and technoeconomic considerations.
Fig. 3: Solid-electrolyte reactors.
Fig. 4: CO2 electrolyser designs for high-purity and high-concentration liquid fuels.

Similar content being viewed by others

References

  1. Solomon, S., Plattner, G.-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1704–1709 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gattuso, J. P. et al. Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722 (2015).

    Article  PubMed  Google Scholar 

  3. Mikkelsen, M., Jørgensen, M. & Krebs, F. C. The teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3, 43–81 (2010).

    Article  CAS  Google Scholar 

  4. Leaders Summit on Climate: Day 1 (US Department of State, 2021); https://www.state.gov/leaders-summit-on-climate/day-1/

  5. DOE Announces Goal to Cut Solar Costs by More than Half by 2030 (US Department of Energy, 2021); https://www.energy.gov/articles/doe-announces-goal-cut-solar-costs-more-half-2030

  6. Obama, B. The irreversible momentum of clean energy. Science 355, 126–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  9. Chen, C., Khosrowabadi Kotyk, J. F. & Sheehan, S. W. Progress toward commercial application of electrochemical carbon dioxide reduction. Chem 4, 2571–2586 (2018).

    Article  CAS  Google Scholar 

  10. Zheng, Y. et al. Understanding the roadmap for electrochemical reduction of CO2 to multi-carbon oxygenates and hydrocarbons on copper-based catalysts. J. Am. Chem. Soc. 141, 7646–7659 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. Fan, L. et al. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, eaay3111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  13. Raciti, D. & Wang, C. Recent advances in CO2 reduction electrocatalysis on copper. ACS Energy Lett. 3, 1545–1556 (2018).

    Article  CAS  Google Scholar 

  14. Zhu, P. et al. Direct and continuous generation of pure acetic acid solutions via electrocatalytic carbon monoxide reduction. Proc. Natl Acad. Sci. USA 118, e2010868118 (2021).

    Article  CAS  PubMed  Google Scholar 

  15. Jouny, M., Hutchings, G. S. & Jiao, F. Carbon monoxide electroreduction as an emerging platform for carbon utilization. Nat. Catal. 2, 1062–1070 (2019).

    Article  CAS  Google Scholar 

  16. Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Article  CAS  PubMed  Google Scholar 

  17. Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  CAS  Google Scholar 

  18. Fan, L., Xia, C., Zhu, P., Lu, Y. & Wang, H. Electrochemical CO2 reduction to high-concentration pure formic acid solutions in an all-solid-state reactor. Nat. Commun. 11, 3633 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    Article  CAS  Google Scholar 

  20. Pang, Y. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat. Catal. 2, 251–258 (2019).

    Article  CAS  Google Scholar 

  21. Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wang, X. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy 5, 478–486 (2020).

    Article  CAS  Google Scholar 

  23. Luo, M. et al. Hydroxide promotes carbon dioxide electroreduction to ethanol on copper via tuning of adsorbed hydrogen. Nat. Commun. 10, 5814 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luc, W. et al. Two-dimensional copper nanosheets for electrochemical reduction of carbon monoxide to acetate. Nat. Catal. 2, 423–430 (2019).

    Article  CAS  Google Scholar 

  25. Wu, Y., Jiang, Z., Lu, X., Liang, Y. & Wang, H. Domino electroreduction of CO2 to methanol on a molecular catalyst. Nature 575, 639–642 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Low, Q. H., Loo, N. W. X., Calle-Vallejo, F. & Yeo, B. S. Enhanced electroreduction of carbon dioxide to methanol using zinc dendrites pulse-deposited on silver foam. Angew. Chem. Int. Ed. 58, 2256–2260 (2019).

    Article  CAS  Google Scholar 

  27. Ye, K. et al. In situ reconstruction of a hierarchical Sn-Cu/SnOx core/shell catalyst for high-performance CO2 electroreduction. Angew. Chem. Int. Ed. 59, 4814–4821 (2020).

    Article  CAS  Google Scholar 

  28. Li, J. et al. Two-dimensional SnO2 nanosheets for efficient carbon dioxide electroreduction to formate. ACS Sustain. Chem. Eng. 8, 4975–4982 (2020).

    Article  CAS  Google Scholar 

  29. Strathmann, H. Ion-Exchange Membrane Separation Processes Vol. 9, 89–146 (Elsevier, 2004).

  30. Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  32. Luo, W., Nie, X., Janik, M. J. & Asthagiri, A. Facet dependence of CO2 reduction paths on Cu electrodes. ACS Catal. 6, 219–229 (2016).

    Article  CAS  Google Scholar 

  33. Bushuyev, O. S. et al. What should we make with CO2 and how can we make it? Joule 2, 825–832 (2018).

    Article  CAS  Google Scholar 

  34. Orella, M. J., Brown, S. M., Leonard, M. E., Román-Leshkov, Y. & Brushett, F. R. A general technoeconomic model for evaluating emerging electrolytic processes. Energy Technol. 8, 1900994 (2020).

    Article  Google Scholar 

  35. Trivedi, G. S., Shah, B. G., Adhikary, S. K., Indusekhar, V. K. & Rangarajan, R. Studies on bipolar membranes. Part II—conversion of sodium acetate to acetic acid and sodium hydroxide. React. Funct. Polym. 32, 209–215 (1997).

    Article  CAS  Google Scholar 

  36. Huang, C., Xu, T., Zhang, Y., Xue, Y. & Chen, G. Application of electrodialysis to the production of organic acids: state-of-the-art and recent developments. J. Membr. Sci. 288, 1–12 (2007).

    Article  CAS  Google Scholar 

  37. Xia, C., Xia, Y., Zhu, P., Fan, L. & Wang, H. Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science 366, 226–231 (2019).

    Article  CAS  PubMed  Google Scholar 

  38. Zhao, C. et al. In situ topotactic transformation of an interstitial alloy for CO electroreduction. Adv. Mater. 32, 2002382 (2020).

    Article  CAS  Google Scholar 

  39. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. CO2 conversion to formic acid in a three compartment cell with Sustainion™ membranes. ECS Trans. 77, 1425–1431 (2017).

    Article  CAS  Google Scholar 

  40. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. Performance and long-term stability of CO2 conversion to formic acid using a three-compartment electrolyzer design. J. CO2 Util. 42, 101349 (2020).

  41. König, M., Vaes, J., Klemm, E. & Pant, D. Solvents and supporting electrolytes in the electrocatalytic reduction of CO2. iScience 19, 135–160 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Zhao, Y. et al. Speciation of Cu surfaces during the electrochemical CO reduction reaction. J. Am. Chem. Soc. 142, 9735–9743 (2020).

    CAS  PubMed  Google Scholar 

  43. Malkani, A. S., Dunwell, M. & Xu, B. Operando spectroscopic investigations of copper and oxide-derived copper catalysts for electrochemical CO reduction. ACS Catal. 9, 474–478 (2019).

    Article  CAS  Google Scholar 

  44. Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu, Q. et al. Carbon dioxide electroreduction to C2 products over copper-cuprous oxide derived from electrosynthesized copper complex. Nat. Commun. 10, 3851 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  47. Rabinowitz, J. A. & Kanan, M. W. The future of low-temperature carbon dioxide electrolysis depends on solving one basic problem. Nat. Commun. 11, 5231 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen, C., Li, Y. & Yang, P. Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation. Joule 5, 737–742 (2021).

    Article  Google Scholar 

  49. Malkani, A. S., Anibal, J. & Xu, B. Cation effect on interfacial CO2 concentration in the electrochemical CO2 reduction reaction. ACS Catal. 10, 14871–14876 (2020).

    Article  CAS  Google Scholar 

  50. Endrődi, B. et al. Operando cathode activation with alkali metal cations for high current density operation of water-fed zero-gap carbon dioxide electrolysers. Nat. Energy 6, 439–448 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Capdevila-Cortada, M. Taming cation effects. Nat. Catal. 2, 641–641 (2019).

    Article  Google Scholar 

  52. Li, J. et al. Hydroxide is not a promoter of C2+ product formation in the electrochemical reduction of CO on copper. Angew. Chem. Int. Ed. 59, 4464–4469 (2020).

    Article  CAS  Google Scholar 

  53. Salvatore, D. A. et al. Designing anion exchange membranes for CO2 electrolysers. Nat. Energy 6, 339–348 (2021).

    Article  CAS  Google Scholar 

  54. Lee, J., Lim, J., Roh, C.-W., Whang, H. S. & Lee, H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes. J. CO2 Util. 31, 244–250 (2019).

  55. Zhao, Q., Stalin, S., Zhao, C.-Z. & Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 5, 229–252 (2020).

    Article  CAS  Google Scholar 

  56. Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    Article  CAS  PubMed  Google Scholar 

  57. Suen, N.-T. et al. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chem. Soc. Rev. 46, 337–365 (2017).

    Article  CAS  PubMed  Google Scholar 

  58. McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Fabbri, E., Habereder, A., Waltar, K., Kötz, R. & Schmidt, T. J. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800–3821 (2014).

    Article  CAS  Google Scholar 

  60. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Oh, H.-S., Nong, H. N., Reier, T., Gliech, M. & Strasser, P. Oxide-supported Ir nanodendrites with high activity and durability for the oxygen evolution reaction in acid PEM water electrolyzers. Chem. Sci. 6, 3321–3328 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Xing, Z., Hu, L., Ripatti, D. S., Hu, X. & Feng, X. Enhancing carbon dioxide gas-diffusion electrolysis by creating a hydrophobic catalyst microenvironment. Nat. Commun. 12, 136 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Huang, J. E. et al. CO2 electrolysis to multicarbon products in strong acid. Science 372, 1074–1078 (2021).

    Article  CAS  PubMed  Google Scholar 

  64. Ripatti, D. S., Veltman, T. R. & Kanan, M. W. Carbon monoxide gas diffusion electrolysis that produces concentrated C2 products with high single-pass conversion. Joule 3, 240–256 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the support from the NSF program (project grant 2029442), the ACS PRF no. 62074-DNI5 and the David and Lucile Packard Foundation Packard Fellowship program (grant no. 2020–71371).

Author information

Authors and Affiliations

Authors

Contributions

H.W. supervised the project. P.Z. summarized the data. P.Z. and H.W. co-wrote the manuscript.

Corresponding author

Correspondence to Haotian Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks David Wakerley and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–3, Figs. 1 and 2 and Note 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Wang, H. High-purity and high-concentration liquid fuels through CO2 electroreduction. Nat Catal 4, 943–951 (2021). https://doi.org/10.1038/s41929-021-00694-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00694-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing