Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The shape of water in zeolites and its impact on epoxidation catalysis

Abstract

Solvent structures that surround active sites reorganize during catalysis and influence the stability of surface intermediates. Within zeolite pores, H2O molecules form hydrogen-bonded structures that differ substantially from bulk H2O. Here, we show by spectroscopic measurements and molecular dynamics simulations that H2O molecules form bulk-like three-dimensional structures within 1.3 nm cages, whereas H2O molecules coalesce into oligomeric one-dimensional chains when the pore diameter falls below 0.65 nm. The differences between these solvent structure motifs provide opportunities to manipulate enthalpy–entropy compensation relationships and greatly increase the rates of catalysis. We describe how the reorganization of these pore-size-dependent H2O structures during alkene epoxidation catalysis gives rise to entropy gains that increase the turnover rates by up to 400-fold. Collectively, this work shows that solvent molecules form distinct structures with a highly correlated motion within microporous environments, and the reorganization of these structures may be controlled to confer stability to the desired reactive intermediates.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Infrared spectra and MD simulations of bulk and intraporous water.
Fig. 2: Infrared spectra of intrapore H2O quantifies the strength of HBs.
Fig. 3: Turnover rates for epoxidations with H2O2 in Ti zeolites of varying (SiOH)x densities.
Fig. 4: Conceptual sequence of steps to form epoxidation transition states over Ti zeolites.
Fig. 5: Relationships between excess enthalpies and entropies from disrupting water in Ti zeolites.

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author upon reasonable request. MD trajectories of the last 100 nanoseconds of equilibration, ab initio MD trajectories and initial and final simulated zeolite structures are available on Zenodo at https://doi.org/10.5281/zenodo.5079480. Source data are provided with this paper.

Code availability

The code and algorithms for analysing the MD simulations are deposited on Zenodo at https://doi.org/10.5281/zenodo.5079480.

References

  1. 1.

    Sievers, C. et al. Phenomena affecting catalytic reactions at solid–liquid interfaces. ACS Catal. 6, 8286–8307 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Dyson, P. J. & Jessop, P. G. Solvent effects in catalysis: rational Improvements of catalysts via manipulation of solvent effects. Catal. Sci. Technol. 6, 3302–3316 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Bregante, D. T., Patel, A. Y., Johnson, A. M. & Flaherty, D. W. Catalytic thiophene oxidation by groups 4 and 5 framework-substituted zeolites with hydrogen peroxide: mechanistic and spectroscopic evidence for the effects of metal Lewis acidity and solvent Lewis basicity. J. Catal. 364, 415–425 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Anslyn, E. V. & Dougherty, D. A. Modern Physical Organic Chemistry (University Science Books, 2005).

  5. 5.

    Bregante, D. T. et al. Cooperative effects between hydrophilic pores and solvents: catalytic consequences of hydrogen bonding on alkene epoxidation in zeolites. J. Am. Chem. Soc. 141, 7302–7319 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  6. 6.

    Bregante, D. T. & Flaherty, D. W. Impact of specific interactions among reactive surface intermediates and confined water on epoxidation catalysis and adsorption in Lewis acid zeolites. ACS Catal. 9, 10951–10962 (2019).

    CAS  Article  Google Scholar 

  7. 7.

    Eckstein, S. et al. Influence of hydronium ions in zeolites on sorption. Angew. Chem. Int. Ed. 58, 3450–3455 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Di Iorio, J. R., Johnson, B. A. & Roman-Leshkov, Y. Ordered hydrogen-bonded alcohol networks confined in Lewis acid zeolites accelerate transfer hydrogenation turnover rates. J. Am. Chem. Soc. 142, 19379–19392 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  9. 9.

    Shetty, M. et al. Directing the rate-enhancement for hydronium ion catalyzed dehydration via organization of alkanols in nanoscopic confinements. Angew. Chem. Int. Ed 60, 2304–2311 (2021).

    CAS  Article  Google Scholar 

  10. 10.

    Zhang, K. et al. Adsorption of water and ethanol in MFI-type zeolites. Langmuir 28, 8664–8673 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  11. 11.

    Zhang, K. et al. Alcohol and water adsorption in zeolitic imidazolate frameworks. Chem. Commun. 49, 3245–3247 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Lively, R. P. et al. Ethanol and water adsorption in methanol-derived ZIF-71. Chem. Commun. 47, 8667–8669 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    Mallon, E. E., Jeon, M. Y., Navarro, M., Bhan, A. & Tsapatsis, M. Probing the relationship between silicalite-1 defects and polyol adsorption properties. Langmuir 29, 6546–6555 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    DeJaco, R. F. et al. Vapor‐ and liquid‐phase adsorption of alcohol and water in silicalite‐1 synthesized in fluoride media. AlChE J. 66, e16868 (2020).

    CAS  Google Scholar 

  15. 15.

    Thomas, J. A. & McGaughey, A. J. H. Reassessing fast water transport through carbon nanotubes. Nano Lett. 8, 2788–2793 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Bregante, D. T. et al. Catalytic consequences of oxidant, alkene, and pore structure on alkene epoxidations within titanium silicates. ACS Catal. 10, 10169–10184 (2020).

    CAS  Article  Google Scholar 

  19. 19.

    Bregante, D. T. et al. Effects of hydrofluoric acid concentration on the density of silanol groups and water adsorption in hydrothermally synthesized transition-metal-substituted silicalite-1. Chem. Mater. 32, 7425–7437 (2020).

    CAS  Article  Google Scholar 

  20. 20.

    Cordon, M. J. et al. Dominant role of entropy in stabilizing sugar isomerization transition states within hydrophobic zeolite pores. J. Am. Chem. Soc. 140, 14244–14266 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Gould, N. S. et al. Understanding solvent effects on adsorption and protonation in porous catalysts. Nat. Commun. 11, 1060 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22.

    Ball, P. Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Forneris, F. & Mattevi, A. Enzymes without borders: mobilizing substrates, delivering products. Science 321, 213–216 (2008).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Snyder, P. W. et al. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc. Natl Acad. Sci. USA 108, 17889–17894 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Hur, S., Newby, Z. E. R. & Bruice, T. C. Transition state stabilization by general acid catalysis, water expulsion, and enzyme reorganization in Medicago savita chalcone isomerase. Proc. Natl Acad. Sci. USA 101, 2730–2735 (2004).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    Setny, P. & Wisniewska, M. D. Water-mediated conformational preselection mechanism in substrate binding cooperativity to protein kinase A. Proc. Natl Acad. Sci. USA 115, 3852–3857 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Grossman, M. et al. Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nat. Struc. Mol. Bio. 18, 1102–1108 (2011).

    CAS  Article  Google Scholar 

  28. 28.

    Silverman, D. N. & McKenna, R. Solvent-mediated proton transfer in catalysis by carbonic anhydrase. Acc. Chem. Res. 40, 669–675 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Harris, J. W., Bates, J. S., Bukowski, B. C., Greeley, J. & Gounder, R. Opportunities in catalysis over metal-zeotypes enabled by descriptions of active centers beyond their binding site. ACS Catal. 10, 9476–9495 (2020).

    CAS  Article  Google Scholar 

  30. 30.

    Li, G., Wang, B. & Resasco, D. E. Water-mediated heterogeneously catalyzed reactions. ACS Catal. 10, 1294–1309 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    Bates, J. S., Bukowski, B. C., Greeley, J. & Gounder, R. Structure and solvation of confined water and water–ethanol clusters within microporous Brønsted acids and their effects on ethanol dehydration catalysis. Chem. Sci. 11, 7102–7122 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  32. 32.

    Bukowski, B. C., Bates, J. S., Gounder, R. & Greeley, J. Defect-mediated ordering of condensed water structures in microporous zeolites. Angew. Chem. Int. Ed. 58, 16422–16426 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Harris, J. W. et al. Titration and quantification of open and closed Lewis acid sites in Sn-Beta zeolites that catalyze glucose isomerization. J. Catal. 335, 141–154 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Gounder, R. & Davis, M. E. Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves. J. Catal. 308, 176 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Vega-Vila, J. C. & Gounder, R. Quantification of intraporous hydrophilic binding sites in Lewis acid zeolites and consequences for sugar isomerization catalysis. ACS Catal. 10, 12197–12211 (2020).

    CAS  Article  Google Scholar 

  36. 36.

    Wang, M. et al. Genesis and stability of hydronium ions in zeolite channels. J. Am. Chem. Soc. 141, 3444–3455 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Bai, P., Tsapatsis, M. & Siepmann, J. I. Multicomponent adsorption of alcohols onto silicalite-1 from aqueous solution: isotherms, structural analysis, and assessment of ideal adsorbed solution theory. Langmuir 28, 15566–15576 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Wang, C.-H., Bai, P., Siepmann, J. I. & Clark, A. E. Deconstructing hydrogen-bond networks in confined nanoporous materials: implications for alcohol–water separation. J. Phys. Chem. C 118, 19723–19732 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Bregante, D. T., Thornburg, N. E., Notestein, J. M. & Flaherty, D. W. Consequences of confinement for alkene epoxidation with hydrogen peroxide on highly dispersed group 4 and 5 metal oxide catalysts. ACS Catal. 8, 2995–3010 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Bregante, D. T., Tan, J. Z., Sutrisno, A. & Flaherty, D. W. Heteroatom substituted zeolite FAU with ultralow Al contents for liquid-phase oxidation catalysis. Catal. Sci. Tech. 10, 635–647 (2020).

    CAS  Article  Google Scholar 

  41. 41.

    Muñoz, M. A., Carmona, C. & Balón, M. FTIR study of water clusters in water–triethylamine solutions. Chem. Phys. 335, 37–42 (2007).

    Article  CAS  Google Scholar 

  42. 42.

    Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Sun, Q. The Raman OH stretching bands of liquid water. Vib. Spectrosc. 51, 213–217 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Sun, Q. & Guo, Y. Vibrational sum frequency generation spectroscopy of the air/water interface. J. Mol. Liq. 213, 28–32 (2016).

    CAS  Article  Google Scholar 

  45. 45.

    Nihonyanagi, S. et al. Accurate determination of complex χ(2) spectrum of the air/water interface. J. Chem. Phys. 143, 124707 (2015).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  46. 46.

    Sadlej, J. Theoretical study of structure and spectra of cage clusters (H2O)n, n = 11,12. Chem. Phys. Lett. 333, 485–492 (2001).

    CAS  Article  Google Scholar 

  47. 47.

    Auer, B., Kumar, R., Schmidt, J. R. & Skinner, J. L. Hydrogen bonding and Raman, IR, and 2D-IR spectroscopy of dilute HOD in liquid D2O. Proc. Natl Acad. Sci. USA 104, 14215–14220 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Zones, S. I. Conversion of faujasites to high-silica chabazite SSZ-13 in the presence of N,N,N-trimethyl-1-adamantammonium Iodide. J. Chem. Soc. Faraday Trans. 87, 3709–3716 (1991).

    CAS  Article  Google Scholar 

  49. 49.

    Zhou, T., Bai, P., Siepmann, J. I. & Clark, A. E. Deconstructing the confinement effect upon the organization and dynamics of water in hydrophobic nanoporous materials: lessons learned from zeolites. J. Phys. Chem. C 121, 22015–22024 (2017).

    CAS  Article  Google Scholar 

  50. 50.

    Fleys, M., Thompson, R. W. & MacDonald, J. C. Comparison of the behavior of water in silicalite and dealuminated zeolite Y at different temperatures by molecular dynamic simulations. J. Phys. Chem. B 108, 12197–12203 (2004).

    CAS  Article  Google Scholar 

  51. 51.

    Nguyen, V. T. et al. A comparative study of the adsorption of water and methanol in zeolite BEA: a molecular simulation study. Mol. Sim. 40, 1113–1124 (2014).

    CAS  Article  Google Scholar 

  52. 52.

    Godawat, R., Jamadagni, S. N. & Garde, S. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proc. Natl Acad. Sci. USA 106, 15119–15124 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  53. 53.

    Paulino, J. et al. Functional stability of water wire–carbonyl interactions in an ion channel. Proc. Natl Acad. Sci. USA 117, 11908–11915 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. 54.

    Cheruzel, L. E. et al. Structures and solid-state dynamics of one-dimensional water chains stabilized by imidazole channels. Angew. Chem. Int. Ed. 42, 5452–5455 (2003).

    CAS  Article  Google Scholar 

  55. 55.

    Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Falk, K., Sedlmeier, F., Joly, L., Netz, R. R. & Bocquet, L. Molecular origin of fast water transport in carbon nanotube membranes: superlubricity versus curvature dependent friction. Nano Lett. 10, 4067–4073 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Salles, F. et al. Molecular insight into the adsorption and diffusion of water in the versatile hydrophilic/hydrophobic flexible MIL-53(Cr) MOF. J. Phys. Chem. C 115, 10764–10776 (2011).

    CAS  Article  Google Scholar 

  58. 58.

    Medders, G. R. & Paesani, F. Water dynamics in metal–organic frameworks: effects of heterogeneous confinement predicted by computational spectroscopy. J. Phys. Chem. Lett. 5, 2897–2902 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Rieth, A. J., Hunter, K. M., Dinca, M. & Paesani, F. Hydrogen bonding structure of confined water templated by a metal–organic framework with open metal sites. Nature Commun. 10, 4771 (2019).

    Article  CAS  Google Scholar 

  60. 60.

    Chakraborty, S., Kumar, H., Dasgupta, C. & Maiti, P. K. Confined water: structure, dynamics, and thermodynamics. Acc. Chem. Res. 50, 2139–2146 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  61. 61.

    Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  62. 62.

    Walrafen, G. E., Hokmabadi, M. S. & Yang, W. H. Raman isosbestic points from liquid water. J. Chem. Phys. 85, 6964–6969 (1986).

    CAS  Article  Google Scholar 

  63. 63.

    Libnau, F. O., Kvalheim, O. M., Christy, A. A. & Toft, J. Spectra of water in the near- and mid-infrared region. Vib. Spectrosc. 7, 243–254 (1994).

    CAS  Article  Google Scholar 

  64. 64.

    McQuarrie, D. A. Statistical Mechanics (University Science Books, 2000).

  65. 65.

    Silverstein, K. A. T., Haymet, A. D. J. & Dill, K. A. The strength of hydrogen bonds in liquid water and around nonpolar solutes. J. Am. Chem. Soc. 122, 8037–8041 (2000).

    CAS  Article  Google Scholar 

  66. 66.

    Walrafen, G. E. & Chu, Y. C. Shear viscosity, heat capacity, and fluctuations of liquid water, all at constant molal volume. J. Phys. Chem. 95, 8909–8921 (1991).

    CAS  Article  Google Scholar 

  67. 67.

    Striolo, A. Nano-confined water. Theo. Comp. Chem. 18, 245–274 (2007).

    CAS  Article  Google Scholar 

  68. 68.

    Munoz-Santiburcio, D. & Marx, D. Chemistry in nanoconfined water. Chem. Sci. 8, 3444–3452 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  69. 69.

    Bregante, D. T. & Flaherty, D. W. Periodic trends in olefin epoxidation over group IV and V framework substituted zeolite catalysts: a kinetic and spectroscopic study. J. Am. Chem. Soc. 139, 6888–6898 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  70. 70.

    Gounder, R. & Iglesia, E. The catalytic diversity of zeolites: confinement and solvation effects within voids of molecular dimensions. Chem. Commun. 49, 3491–3509 (2013).

    CAS  Article  Google Scholar 

  71. 71.

    Ardagh, M. A., Bregante, D. T., Flaherty, D. W. & Notestein, J. M. Controlled deposition of silica on titania–silica to alter the active site surroundings on epoxidation catalysts. ACS Catal. 10, 13008–13018 (2020).

    CAS  Article  Google Scholar 

  72. 72.

    Cremer, E. The compensation effect in heterogeneous catalysis. Adv. Catal. 7, 75–91 (1955).

    CAS  Google Scholar 

  73. 73.

    Flaherty, D. W. & Iglesia, E. Transition-state enthalpy and entropy effects on reactivity and selectivity in hydrogenolysis of n-alkanes. J. Am. Chem. Soc. 135, 18586–18599 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  74. 74.

    Mellmer, M. A. et al. Solvent-enabled control of reactivity for liquid phase reactions of biomass-derived compounds. Nat. Catal. 1, 199–207 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Qin, Z. et al. Comparative study of Nano-ZSM-5 catalysts synthesized in OH- and F- media. Adv. Funct. Mater. 24, 257–264 (2014).

    CAS  Article  Google Scholar 

  76. 76.

    Grahn, M. et al. Small ZSM-5 crystals with low defect density as an effective catalyst for conversion of methanol to hydrocarbons. Catal. Today 345, 136–146 (2020).

    CAS  Article  Google Scholar 

  77. 77.

    Grosso-Giordano, N. A. et al. Outer-sphere control of catalysis on surfaces: a comparative study of Ti(IV) single-sites grafted on amorphous versus crystalline silicates for alkene epoxidation. J. Am. Chem. Soc. 140, 4956–4960 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  78. 78.

    Grosso-Giordano, N. A. et al. Dynamic reorganization and confinement of Ti(IV) active sites controls olefin epoxidation catalysis on two-dimensional zeotypes. J. Am. Chem. Soc. 141, 7090–7106 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  79. 79.

    Wang, L. et al. A significant enhancement of catalytic activities in oxidation with H2O2 over the TS-1 zeolite by adjusting the catalyst wettability. Chem. Commun. 50, 2012–2014 (2014).

    CAS  Article  Google Scholar 

  80. 80.

    Cordon, M. J. et al. The dominant role of entropy in stabilizing sugar isomerization transition states within hydrophobic zeolite pores. J. Am. Chem. Soc. 140, 14244–14266 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  81. 81.

    Conrad, S., Wolf, P., Müller, P., Orsted, H. & Hermans, I. Influence of hydrophilicity on the Snβ-catalyzed Baeyer–Villiger oxidation of cyclohexanone with aqueous hydrogen peroxide. ChemCatChem 9, 175–182 (2017).

    CAS  Article  Google Scholar 

  82. 82.

    Blasco, T. et al. Direct synthesis and characterization of hydrophobic aluminum-free Ti-beta zeolite. J. Phys. Chem. B 102, 75–88 (1998).

    CAS  Article  Google Scholar 

  83. 83.

    Marler, B., Wang, Y., Song, J. & Gies, H. Topotactic condensation of layer silicates with ferrierite-type layers forming porous tectosilicates. Dalton Trans. 43, 10396–10416 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Doyle, W. M. Absorbance linearity and repeatability in cylindrical internal reflectance FT-IR spectroscopy of liquids. Appl. Spectrosc. 44, 50–59 (1990).

    CAS  Article  Google Scholar 

  85. 85.

    Hijar, C. A. et al. The Siting of Ti in TS-1 is non-random. Powder neutron diffraction studies and theoretical calculations of TS-1 and FeS-1. J. Phys. Chem. B 104, 12157–12164 (2000).

    CAS  Article  Google Scholar 

  86. 86.

    Horn, H. W. et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 (2004).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  87. 87.

    Emami, F. S. et al. Force field and a surface model database for silica to simulate interfacial properties in atomic resolution. Chem. Mater. 26, 2647–2658 (2014).

    CAS  Article  Google Scholar 

  88. 88.

    Rappe, A. K., Casewit, C. J., Colwell, K. S., Goddard, W. A. III & Skiff, W. M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    CAS  Article  Google Scholar 

  89. 89.

    Case, D. et al. AMBER 18 (University of California, 2018).

  90. 90.

    Gotz, A. W. et al. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized Born. J. Chem. Theory Comput. 8, 1542–1555 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  91. 91.

    Salomon-Ferrer, R., Gotz, A. W., Poole, D., Le Grand, S. & Walker, R. C. Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. J. Chem. Theory Comput. 9, 3878–3888 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  92. 92.

    Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A. & Haak, J. R. Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    CAS  Article  Google Scholar 

  93. 93.

    Kräutler, V., van Gunsteren, W. F. & Hünenberger, P. H. A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. J. Comput. Chem. 22, 501–508 (2001).

    Article  Google Scholar 

  94. 94.

    York, D. M., Darden, T. A. & Pedersen, L. G. The effect of long‐range electrostatic interactions in simulations of macromolecular crystals: a comparison of the Ewald and truncated list methods. J. Chem. Phys. 99, 8345–8348 (1993).

    CAS  Article  Google Scholar 

  95. 95.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    CAS  Article  Google Scholar 

  96. 96.

    Roe, D. R. & Cheatham, T. E. III PTRAJ and CPPTRAJ: software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 9, 3084–3095 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  97. 97.

    McGibbon, R. T. et al. MDTraj: A modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. 98.

    Jeffrey, G. A. An Introduction to Hydrogen Bonding Vol. 12 (Oxford Univ. Press, 1997).

  99. 99.

    Chorkendorff, I. & Niemantsverdriet, J. W. H. Concepts of Modern Catalysis and Kinetics 2nd edn (Wiley-VCH, 2007).

Download references

Acknowledgements

This work was supported by the Department of Energy, Office of Science, Office of Basic Energy Sciences, under Award DE-SC0020224 (D.T.B., J.Z.T., E.Z.A. and D.W.F.). D.T.B. was also partially supported by the Department of Defense through the National Defense Science & Engineering Graduate (NDSEG) Fellowship Program and through a Dissertation Completion Fellowship from the University of Illinois. E.Z.A. was partially supported by the US Army Research Office (W911NF-18-1-0100). C.P.N. was supported by Honeywell UOP. This work was carried out, in part, in the Frederick Seitz Materials Research Laboratory. M.C.C. and D.S. acknowledge support from Blue Waters sustained-petascale computing project, which is supported by the National Science Foundation (awards OCI-0725070 and ACI-1238993), the State of Illinois and, as of December 2019, the National Geospatial-Intelligence Agency. Blue Waters is a joint effort of the University of Illinois at Urbana-Champaign and its National Center for Supercomputing Applications.

Author information

Affiliations

Authors

Contributions

D.T.B. and D.W.F. conceptualized the paper. D.T.B., J.Z.T., E.Z.A. and C.P.N. synthesized and characterized the zeolites. D.T.B. and J.Z.T. performed the spectroscopic and kinetic measurements. M.C.C. and D.S. performed the MD simulations. D.T.B. wrote the original draft of the manuscript and all the authors reviewed and edited its content. D.S. and D.W.F. supervised the work.

Corresponding author

Correspondence to David W. Flaherty.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Daniel Resasco and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–18, Notes 1–14, Tables 1–9 and references.

Supplementary Video 1

Representative dynamics of water molecules within Ti-FAU-F from the final 25 ns of the classical MD simulation.

Supplementary Video 2

Representative dynamics of water molecules within Ti-FAU-OH from the final 25 ns of the classical MD simulation.

Supplementary Video 3

Representative dynamics of water molecules within Ti-BEA-F from the final 25 ns of the classical MD simulation.

Supplementary Video 4

Representative dynamics of water molecules within Ti-BEA-OH from the final 25 ns of the classical MD simulation.

Supplementary Video 5

Representative dynamics of water molecules within Ti-MFI-F from the final 25 ns of the classical MD simulation.

Supplementary Video 6

Representative dynamics of water molecules within Ti-MFI-OH from the final 25 ns of the classical MD simulation.

Supplementary Video 7

Representative dynamics of water molecules within Si-CDO-F from the final 25 ns of the classical MD simulation.

Supplementary Video 8

Representative dynamics of water molecules within Si-CDO-OH from the final 25 ns of the classical MD simulation.

Source data

Source Data Fig. 1

Statistical Source Data.

Source Data Fig. 2

Statistical Source Data.

Source Data Fig. 3

Statistical Source Data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bregante, D.T., Chan, M.C., Tan, J.Z. et al. The shape of water in zeolites and its impact on epoxidation catalysis. Nat Catal 4, 797–808 (2021). https://doi.org/10.1038/s41929-021-00672-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing