Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation


Copper-zinc-alumina catalysts are used industrially for methanol synthesis from feedstock containing carbon monoxide and carbon dioxide. The high performance of the catalyst stems from synergies that develop between its components. This important catalytic system has been investigated with a myriad of approaches, however, no comprehensive agreement on the fundamental source of its high activity has been reached. One potential source of disagreement is the considerable variation in pressure used in studies to understand a process that is performed industrially at pressures above 20 bar. Here, by systematically studying the catalyst state during temperature-programmed reduction and under carbon dioxide hydrogenation with in situ and operando X-ray absorption spectroscopy over four orders of magnitude in pressure, we show how the state and evolution of the catalyst is defined by its environment. The structure of the catalyst shows a strong pressure dependence, especially below 1 bar. As pressure gaps are a general problem in catalysis, these observations have wide-ranging ramifications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Pressure dependence as the source of differing opinions on CZA catalysts.
Fig. 2: Composition of the copper and zinc phases during reduction in hydrogen.
Fig. 3: Structure of the CZA catalyst as a function of hydrogen pressure.
Fig. 4: Reduction kinetics of the CZA catalyst.
Fig. 5: Structure under catalytic conditions.

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary Information files) or can be obtained from the authors on reasonable request.


  1. 1.

    Topsøe, H. Developments in operando studies and in situ characterization of heterogeneous catalysts. J. Catal. 216, 155–164 (2003).

    Google Scholar 

  2. 2.

    Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    CAS  PubMed  Google Scholar 

  3. 3.

    Roy, K., Artiglia, L. & van Bokhoven, J. A. Ambient pressure photoelectron spectroscopy: opportunities in catalysis from solids to liquids and introducing time resolution. ChemCatChem 10, 666–682 (2018).

    CAS  Google Scholar 

  4. 4.

    Artiglia, L. et al. Introducing time resolution to detect Ce3+ catalytically active sites at the Pt/CeO2 interface through ambient pressure X-ray photoelectron spectroscopy. J. Phys. Chem. Lett. 8, 102–108 (2017).

    CAS  PubMed  Google Scholar 

  5. 5.

    Artiglia, L. et al. In situ X-ray photoelectron spectroscopy detects multiple active sites involved in the selective anaerobic oxidation of methane in copper-exchanged zeolites. ACS Catal. 9, 6728–6737 (2019).

    CAS  Google Scholar 

  6. 6.

    Hansen, P. L. et al. Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053–2055 (2002).

    CAS  PubMed  Google Scholar 

  7. 7.

    Creemer, J. F. et al. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108, 993–998 (2008).

    CAS  PubMed  Google Scholar 

  8. 8.

    Ek, M., Ramasse, Q. M., Arnarson, L., Georg Moses, P. & Helveg, S. Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts. Nat. Commun. 8, 305 (2017).

    PubMed  PubMed Central  Google Scholar 

  9. 9.

    Huang, X. et al. Atomic-scale observation of the metal-promoter interaction in Rh-based syngas upgrading catalysts. Angew. Chem. Int. Ed. 58, 8709–8713 (2019).

    CAS  Google Scholar 

  10. 10.

    Dry, M. E. in Handbook of Heterogeneous Catalysis 2nd edn (ed. Ertl, G. et al.) 2965–2994 (Wiley, 2008).

  11. 11.

    Schlögl, R. in Handbook of Heterogeneous Catalysis 2nd edn (ed. Ertl, G. et al.) 2501–2575 (Wiley, 2008).

  12. 12.

    Hinrichsen, K.-O., Kochloefl, K. & Muhler, M. in Handbook of Heterogeneous Catalysis 2nd edn (ed. Ertl, G. et al.) 2905–2920 (Wiley, 2008).

  13. 13.

    Hansen, J. B. & Højlund Nielsen, P. E. in Handbook of Heterogeneous Catalysis 2nd edn (ed. Ertl, G. et al.) 2920–2949 (Wiley, 2008).

  14. 14.

    Stoltze, P. & Nørskov, J. K. Bridging the ‘pressure gap’ between ultrahigh-vacuum surface physics and high-pressure catalysis. Phys. Rev. Lett. 55, 2502–2505 (1985).

    CAS  PubMed  Google Scholar 

  15. 15.

    Reece, C., Redekop, E. A., Karakalos, S., Friend, C. M. & Madix, R. J. Crossing the great divide between single-crystal reactivity and actual catalyst selectivity with pressure transients. Nat. Catal. 1, 852–859 (2018).

    CAS  Google Scholar 

  16. 16.

    Goodman, D. W. Model studies in catalysis using surface science probes. Chem. Rev. 95, 523–536 (1995).

    CAS  Google Scholar 

  17. 17.

    Freund, H. J. Model studies in heterogeneous catalysis. Chemistry 16, 9384–9397 (2010).

    CAS  PubMed  Google Scholar 

  18. 18.

    Campbell, C. T. Energies of adsorbed catalytic intermediates on transition metal surfaces: calorimetric measurements and benchmarks for theory. Acc. Chem. Res. 52, 984–993 (2019).

    CAS  PubMed  Google Scholar 

  19. 19.

    Esposito, D. Mind the gap. Nat. Catal. 1, 807–808 (2018).

    Google Scholar 

  20. 20.

    Barcaro, G. et al. Building principles and structural motifs in TiOx ultrathin films on a (111) substrate. J. Phys. Chem. C 116, 13302–13306 (2012).

    CAS  Google Scholar 

  21. 21.

    Bron, M. et al. Bridging the pressure and materials gap: in-depth characterisation and reaction studies of silver-catalysed acrolein hydrogenation. J. Catal. 234, 37–47 (2005).

    CAS  Google Scholar 

  22. 22.

    van Spronsen, M. A., Frenken, J. W. M. & Groot, I. M. N. Surface science under reaction conditions: CO oxidation on Pt and Pd model catalysts. Chem. Soc. Rev. 46, 4347–4374 (2017).

    PubMed  Google Scholar 

  23. 23.

    Oosterbeek, H. Bridging the pressure and material gap in heterogeneous catalysis: cobalt Fischer–Tropsch catalysts from surface science to industrial application. Phys. Chem. Chem. Phys. 9, 3570–3576 (2007).

    CAS  PubMed  Google Scholar 

  24. 24.

    Corma, A., Serna, P., Concepción, P. & Calvino, J. J. Transforming nonselective into chemoselective metal catalysts for the hydrogenation of substituted nitroaromatics. J. Am. Chem. Soc. 130, 8748–8753 (2008).

    CAS  PubMed  Google Scholar 

  25. 25.

    Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts. Science 355, 1296–1299 (2017).

    CAS  PubMed  Google Scholar 

  26. 26.

    Kattel, S., Ramírez, P. J., Chen, J. G., Rodriguez, J. A. & Liu, P. Response to Comment on ‘Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts’. Science 357, eaan8210 (2017).

    PubMed  Google Scholar 

  27. 27.

    Nakamura, J. et al. Comment on ‘Active sites for CO2 hydrogenation to methanol on Cu/ZnO catalysts’. Science 357, eaan8074 (2017).

    PubMed  Google Scholar 

  28. 28.

    Kondrat, S. A. et al. Stable amorphous georgeite as a precursor to a high-activity catalyst. Nature 531, 83–87 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Nakamura, J., Choi, Y. & Fujitani, T. On the issue of the active site and the role of ZnO in Cu/ZnO methanol synthesis catalysts. Top. Catal. 22, 277–285 (2003).

    CAS  Google Scholar 

  30. 30.

    Grunwaldt, J.-D., Molenbroek, A., Topsøe, N.-Y., Topsøe, H. & Clausen, B. In situ investigations of structural changes in Cu/ZnO catalysts. J. Catal. 194, 452–460 (2000).

    CAS  Google Scholar 

  31. 31.

    Kuld, S. et al. Quantifying the promotion of Cu catalysts by ZnO for methanol synthesis. Science 352, 969–974 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Frei, E. et al. Cu−Zn alloy formation as unfavored state for efficient methanol catalysts. ChemCatChem 12, 4029–4033 (2020).

    CAS  Google Scholar 

  33. 33.

    Lunkenbein, T. et al. Bridging the time gap: a copper/zinc oxide/aluminum oxide catalyst for methanol synthesis studied under industrially relevant conditions and time scales. Angew. Chem. Int. Ed. 55, 12708–12712 (2016).

    CAS  Google Scholar 

  34. 34.

    Lunkenbein, T., Schumann, J., Behrens, M., Schlögl, R. & Willinger, M. G. Formation of a ZnO overlayer in industrial Cu/ZnO/Al2O3 catalysts induced by strong mMetal-support interactions. Angew. Chem. Int. Ed. 54, 4544–4548 (2015).

    CAS  Google Scholar 

  35. 35.

    Wagner, J. B. et al. In situ electron energy loss spectroscopy studies of gas-dependent metal–support interactions in Cu/ZnO catalysts. J. Phys. Chem. B 107, 7753–7758 (2003).

    CAS  Google Scholar 

  36. 36.

    Kuld, S., Conradsen, C., Moses, P. G., Chorkendorff, I. & Sehested, J. Quantification of zinc atoms in a surface alloy on copper in an industrial-type methanol synthesis catalyst. Angew. Chem. Int. Ed. 53, 5941–5945 (2014).

    CAS  Google Scholar 

  37. 37.

    Divins, N. J. et al. Operando high-pressure investigation of size-controlled CuZn catalysts for the methanol synthesis reaction. Nat. Commun. 12, 1435 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Frost, J. C. Junction effect interactions in methanol synthesis catalysts. Nature 334, 577–580 (1988).

    CAS  Google Scholar 

  39. 39.

    Schott, V. et al. Chemical activity of thin oxide layers: strong interactions with the support yield a new thin-film phase of ZnO. Angew. Chem. Int. Ed. 52, 11925–11929 (2013).

    CAS  Google Scholar 

  40. 40.

    Zander, S. et al. The role of the oxide component in the development of copper composite catalysts for methanol synthesis. Angew. Chem. Int. Ed. 52, 6536–6540 (2013).

    CAS  Google Scholar 

  41. 41.

    Spencer, M. S. α-brass formation in copper/zinc oxide catalysts: III. Surface segregation of zinc in α-brass. Surf. Sci. 192, 336–343 (1987).

    CAS  Google Scholar 

  42. 42.

    Clausen, B. S. & Topsøe, H. In situ high pressure, high temperature XAFS studies of Cu-based catalysts during methanol synthesis. Catal. Today 9, 189–196 (1991).

    CAS  Google Scholar 

  43. 43.

    Holse, C. et al. Dynamic behavior of CuZn nanoparticles under oxidizing and reducing conditions. J. Phys. Chem. C 119, 2804–2812 (2015).

    CAS  Google Scholar 

  44. 44.

    Martin, O. et al. Operando synchrotron X-ray powder diffraction and modulated-excitation infrared spectroscopy elucidate the CO2 promotion on a commercial methanol synthesis catalyst. Angew. Chem. Int. Ed. 55, 11031–11036 (2016).

    CAS  Google Scholar 

  45. 45.

    Fujitani, T. & Nakamura, J. The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal. Lett. 56, 119–124 (1998).

    CAS  Google Scholar 

  46. 46.

    Zabilskiy, M. et al. The unique interplay between copper and zinc during catalytic carbon dioxide hydrogenation to methanol. Nat. Commun. 11, 2409 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Frahm, R. et al. The dedicated QEXAFS facility at the SLS: performance and scientific opportunities. AIP Conf. Proc. 1234, 251–255 (2010).

    CAS  Google Scholar 

  48. 48.

    Moog, I., Prestipino, C., Figueroa, S., Majimel, J. & Demourgues, A. Dual Ce4+/Fe3+ redox phenomena into nanocrystalline Ce1−xFexO2−x/2 solid solution. J. Phys. Chem. C 118, 22746–22753 (2014).

    CAS  Google Scholar 

  49. 49.

    Hsu, H. S. et al. Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO. Appl. Phys. Lett. 88, 242507 (2006).

    Google Scholar 

  50. 50.

    Neogi, S. K., Ahmed, M. A., Banerjee, A. & Bandyopadhyay, S. Enhanced ferromagnetism by ion irradiation for substitutionally cobalt doped ZnO films. Appl. Surf. Sci. 481, 443–453 (2019).

    CAS  Google Scholar 

  51. 51.

    Kuzmin, A., Larcheri, S. & Rocca, F. Zn K-edge XANES in nanocrystalline ZnO. J. Phys. Conf. Ser. 93, 2–8 (2007).

    Google Scholar 

  52. 52.

    Słoczyn ́ski, J. & Bobin ́ski, W. Autocatalytic effect in the processes of metal oxide reduction. I. Kinetic model of the reduction. J. Solid State Chem. 92, 420–435 (1991).

    Google Scholar 

  53. 53.

    Voge, H., & Atkins, L. T. Uniformity of supported CuO from rate of reduction with hydrogen. J. Catal. 1, 171–179 (1962).

    CAS  Google Scholar 

  54. 54.

    Rodriguez, J. A., Kim, J. Y., Hanson, J. C., Pérez, M. & Frenkel, A. I. Reduction of CuO in H2: in situ time-resolved XRD studies. Catal. Lett. 85, 247–254 (2003).

    CAS  Google Scholar 

  55. 55.

    Vesborg, P. C. K. et al. Transient behavior of Cu/ZnO-based methanol synthesis catalysts. J. Catal. 262, 65–72 (2009).

    CAS  Google Scholar 

  56. 56.

    Beck, A. et al. The dynamics of overlayer formation on catalyst nanoparticles and strong metal-support interaction. Nat. Commun. 11, 3220 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Laudenschleger, D., Ruland, H. & Muhler, M. Identifying the nature of the active sites in methanol synthesis over Cu/ZnO/Al2O3 catalysts. Nat. Commun. 11, 3898 (2020).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Zabilskiy, M., Sushkevich, V. L., Newton, M. A. & van Bokhoven, J. A. Copper–zinc alloy-free synthesis of methanol from carbon dioxide over Cu/ZnO/faujasite. ACS Catal. 10, 14240–14244 (2020).

    CAS  Google Scholar 

  59. 59.

    Newton, M. A. et al. Unwanted effects of X-rays in surface grafted copper(ii) organometallics and copper exchanged zeolites, how they manifest, and what can be done about them. Phys. Chem. Chem. Phys. 22, 6826–6837 (2020).

    CAS  PubMed  Google Scholar 

  60. 60.

    Chupas, P. J. et al. A versatile sample-environment cell for non-ambient X-ray scattering experiments. J. Appl. Crystallogr. 41, 822–824 (2008).

    CAS  Google Scholar 

  61. 61.

    Clark, A. H., Imbao, J., Frahm, R. & Nachtegaal, M. ProQEXAFS: a highly optimized parallelized rapid processing software for QEXAFS data. J. Synchrotron Radiat. 27, 551–557 (2020).

    PubMed  PubMed Central  Google Scholar 

  62. 62.

    Figueroa, S. J. A. & Prestipino, C. PrestoPronto: a code devoted to handling large data sets. J. Phys. Conf. Ser. 712, 012012 (2016).

    Google Scholar 

  63. 63.

    Binsted, N. EXCURV98 (CCLRC Daresbury Laboratory, 1998).

  64. 64.

    Binsted, N., Strange, R. W. & Hasnain, S. S. Constrained and restrained refinement in EXAFS data analysis with curved wave theory. Jpn. J. Appl. Phys. 32, 141–143 (1993).

    CAS  Google Scholar 

Download references


We thank H. Frey, D. Cartagenova, I. Sadykov and M. Ghosalya for support during the beamtime experiments; Z. Jovanovic for discussion on the kinetics; F. Krumeich for the provided electron microscopy. The authors also thank A. Clark for providing access to the ProXAS program for qXAS spectra calibration, normalization and SIMPLISIMA-LCF analysis. Part of this work was performed at the Swiss Light Source, Paul Scherrer Institute, Switzerland. We acknowledge the Swiss Light Source for providing synchrotron radiation beamtime at the SuperXAS beamline. A.B. and J.A.v.B. acknowledge the SNSF project 200021_178943. M.W. acknowledges funding from the SNSF project 200021_181053. M.A.N. acknowledges Shell Global Solutions for the part funding of his position.

Author information




A.B. wrote the manuscript. A.B., M.Z. and O.S. conducted the experiments and performed the data analysis. M.A.N. contributed the EXAFS analysis. A.B., M.W. and J.A.v.B. designed the study. All authors participated in discussions and writing the manuscript.

Corresponding authors

Correspondence to Marc G. Willinger or Jeroen A. van Bokhoven.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Janis Timoshenko and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–5, Figs. 1–22 and Tables 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beck, A., Zabilskiy, M., Newton, M.A. et al. Following the structure of copper-zinc-alumina across the pressure gap in carbon dioxide hydrogenation. Nat Catal 4, 488–497 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing