Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure

A Publisher Correction to this article was published on 30 April 2021

This article has been updated

Abstract

Artificial carbon fixation contributes to closing the anthropogenic carbon cycle. However, large-scale conversion of CO2 into selective products remains a challenge. Coupled thermal–electrochemical catalysis could offer an attractive approach to upgrading CO2 into value-added products if selective electrocatalysts and integrated devices were developed. Here we identify a mechanistic route to selectively producing either CO or CH4 with high selectivity (>95%) using Ir–ceria-based catalysts in an intermediate-temperature (400 °C) CO2 electrolyser that operates at low overpotential and ambient pressure. We show that tuning of the Ir–O hybridization by controlling the Ir speciation can alter the catalyst surface chemical environment, enabling the stabilization of specific transition states for the production of either CO or CH4 during electrocatalysis. By achieving CO2 electrohydrogenation in tandem with light-alkane electrodehydrogenation, we further demonstrate that such an advanced electrolyser could be extended to the upgrade of different carbon resources in one-step, significantly enhancing the techno-economic feasibilty of the process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electronic interpretation of the interfaces of SDC and Irn clusters.
Fig. 2: DFT calculations of the CO2 conversion reactions.
Fig. 3: Composition, crystal and electronic structure identification.
Fig. 4: Electrocatalytic selectivity for CO2 hydrogenation.
Fig. 5: CO2 electrohydrogenation in tandem with C2H6 electrodehydrogenation.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Any additional data are available upon request from the corresponding author. Additional methods and results are provided in the Supplementary Information.

Change history

References

  1. Mahaffy, P. G., Matlin, S. A., Holme, T. A. & MacKellar, J. Systems thinking for education about the molecular basis of sustainability. Nat. Sustain. 2, 362–370 (2019).

    Article  Google Scholar 

  2. Jacobson, T. A. et al. Direct human health risks of increased atmospheric carbon dioxide. Nat. Sustain. 2, 691–701 (2019).

    Article  Google Scholar 

  3. Jiang, M. et al. The fate of carbon in a mature forest under carbon dioxide enrichment. Nature 580, 227–231 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    Article  CAS  PubMed  Google Scholar 

  5. Gomez, E., Yan, B., Kattel, S. & Chen, J. G. Carbon dioxide reduction in tandem with light-alkane dehydrogenation. Nat. Rev. Chem. 3, 638–649 (2019).

    Article  CAS  Google Scholar 

  6. Ye, R.-P. et al. CO2 hydrogenation to high-value products via heterogeneous catalysis. Nat. Commun. 10, 5698 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Field, C. B. & Mach, K. J. Rightsizing carbon dioxide removal. Science 356, 706–707 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. Patel, H. A., Byun, J. & Yavuz, C. T. Carbon dioxide capture adsorbents: chemistry and methods. ChemSusChem 10, 1303–1317 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Roy, S., Cherevotan, A. & Peter, S. C. Thermochemical CO2 hydrogenation to single carbon products: scientific and technological challenges. ACS Energy Lett. 3, 1938–1966 (2018).

    Article  CAS  Google Scholar 

  10. Stamenkovic, V. R., Strmcnik, D., Lopes, P. P. & Markovic, N. M. Energy and fuels from electrochemical interfaces. Nat. Mater. 16, 57–69 (2017).

    Article  CAS  Google Scholar 

  11. Wang, W.-H., Himeda, Y., Muckerman, J. T., Manbeck, G. F. & Fujita, E. CO2 hydrogenation to formate and methanol as an alternative to photo- and electrochemical CO2 reduction. Chem. Rev. 115, 12936–12973 (2015).

    Article  CAS  PubMed  Google Scholar 

  12. Tackett, B. M., Sheng, W. & Chen, J. G. Opportunities and challenges in utilizing metal-modified transition metal carbides as low-cost electrocatalysts. Joule 1, 253–263 (2017).

    Article  CAS  Google Scholar 

  13. Fan, L. et al. Strategies in catalysts and electrolyzer design for electrochemical CO2 reduction toward C2+ products. Sci. Adv. 6, eaay3111 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. De Luna, P. et al. What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science 364, eaav3506 (2019).

    Article  PubMed  Google Scholar 

  15. Meng, Y. et al. Highly active oxygen evolution integrated with efficient CO2 to CO electroreduction. Proc. Natl Acad. Sci. USA 116, 23915–23922 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zheng, T., Jiang, K. & Wang, H. Recent advances in electrochemical CO2-to-CO conversion on heterogeneous catalysts. Adv. Mater. 30, 1802066 (2018).

    Article  Google Scholar 

  17. Ma, M. et al. Insights into the carbon balance for CO2 electroreduction on Cu using gas diffusion electrode reactor designs. Energy Environ. Sci. 13, 977–985 (2020).

    Article  CAS  Google Scholar 

  18. Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    Article  CAS  PubMed  Google Scholar 

  19. Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  PubMed  Google Scholar 

  20. Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. Chen, Y., Li, C. W. & Kanan, M. W. Aqueous CO2 reduction at very low overpotential on oxide-derived Au nanoparticles. J. Am. Chem. Soc. 134, 19969–19972 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Ding, D. et al. A novel low-thermal-budget approach for the co-production of ethylene and hydrogen via the electrochemical non-oxidative deprotonation of ethane. Energy Environ. Sci. 11, 1710–1716 (2018).

    Article  CAS  Google Scholar 

  23. Zhang, X., Ye, L., Li, H., Chen, F. & Xie, K. Electrochemical dehydrogenation of ethane to ethylene in a solid oxide electrolyzer. ACS Catal. 10, 3505–3513 (2020).

    Article  CAS  Google Scholar 

  24. Duan, C. et al. Highly efficient reversible protonic ceramic electrochemical cells for power generation and fuel production. Nat. Energy 4, 230–240 (2019).

    Article  CAS  Google Scholar 

  25. Van Deelen, T. W., Hernández Mejía, C. & de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2, 955–970 (2019).

    Article  Google Scholar 

  26. Yang, X. et al. Low pressure CO2 hydrogenation to methanol over gold nanoparticles activated on a CeOx/TiO2 interface. J. Am. Chem. Soc. 137, 10104–10107 (2015).

    Article  CAS  PubMed  Google Scholar 

  27. Hua, B. et al. A coupling for success: controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition. Nano Energy 32, 247–254 (2017).

    Article  CAS  Google Scholar 

  28. Lam, E. et al. CO2 hydrogenation on Cu/Al2O3: role of the metal/support interface in driving activity and selectivity of a bifunctional catalyst. Angew. Chem. Int. Ed. 58, 13989–13996 (2019).

    Article  CAS  Google Scholar 

  29. Li, M., Hua, B., Chen, J., Zhong, Y. & Luo, J.-L. Charge transfer dynamics in RuO2/perovskite nanohybrid for enhanced electrocatalysis in solid oxide electrolyzers. Nano Energy 57, 186–194 (2019).

    Article  CAS  Google Scholar 

  30. Zhang, L., Zhou, M., Wang, A. & Zhang, T. Selective hydrogenation over supported metal catalysts: from nanoparticles to single atoms. Chem. Rev. 120, 683–733 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Jeong, H. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat. Catal. 3, 368–375 (2020).

    Article  CAS  Google Scholar 

  32. Beniya, A. & Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat. Catal. 2, 590–602 (2019).

    Article  Google Scholar 

  33. Lou, Y. et al. Pocketlike active site of Rh1/MoS2 single-atom catalyst for selective crotonaldehyde hydrogenation. J. Am. Chem. Soc. 141, 19289–19295 (2019).

    Article  CAS  PubMed  Google Scholar 

  34. Krewald, V., Neese, F. & Pantazis, D. A. Redox potential tuning by redox-inactive cations in nature’s water oxidizing catalyst and synthetic analogues. Phys. Chem. Chem. Phys. 18, 10739–10750 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. Hong, W. T. et al. Probing LaMO3 metal and oxygen partial density of states using X-ray emission, absorption, and photoelectron spectroscopy. J. Phys. Chem. C 119, 2063–2072 (2015).

    Article  CAS  Google Scholar 

  36. Winterbottom, W. L. Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303–310 (1967).

    Article  CAS  Google Scholar 

  37. Wulff, G. X. X. V. Zur frage der geschwindigkeit des wachsthums und der auflösung der krystallflächen. Z. Kristallogr. Cryst. Mater. 34, 449 (1901).

    Article  CAS  Google Scholar 

  38. Molina, L. M. & Hammer, B. Active role of oxide support during CO oxidation at Au/MgO. Phys. Rev. Lett. 90, 206102 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Du, J., Sun, X., Chen, J. & Jiang, G. A theoretical study on small iridium clusters: structural evolution, electronic and magnetic properties, and reactivity predictors. J. Phys. Chem. A 114, 12825–12833 (2010).

    Article  CAS  PubMed  Google Scholar 

  40. Henkelman, G., Arnaldsson, A. & Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006).

    Article  Google Scholar 

  41. Sanville, E., Kenny, S. D., Smith, R. & Henkelman, G. Improved grid‐based algorithm for Bader charge allocation. J. Comput. Chem. 28, 899–908 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    Article  CAS  PubMed  Google Scholar 

  43. Yu, M. & Trinkle, D. R. Accurate and efficient algorithm for Bader charge integration. J. Chem. Phys. 134, 064111 (2011).

    Article  PubMed  Google Scholar 

  44. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  PubMed  Google Scholar 

  45. Zhao, Y. et al. Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proc. Natl Acad. Sci. USA 115, 2902–2907 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao, Y. et al. End-on bound iridium dinuclear heterogeneous catalysts on WO3 for solar water oxidation. ACS Cent. Sci. 4, 1166–1172 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sengodan, S. et al. Layered oxygen-deficient double perovskite as an efficient and stable anode for direct hydrocarbon solid oxide fuel cells. Nat. Mater. 14, 205–209 (2015).

    Article  CAS  PubMed  Google Scholar 

  48. Bai, S. et al. Highly active and selective hydrogenation of CO2 to ethanol by ordered Pd–Cu nanoparticles. J. Am. Chem. Soc. 139, 6827–6830 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Dong, W., Kresse, G., Furthmüller, J. & Hafner, J. Chemisorption of H on Pd(111): An ab initio approach with ultrasoft pseudopotentials. Phys. Rev. B 54, 2157–2166 (1996).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  51. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  52. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  53. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  54. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  PubMed  Google Scholar 

  55. Dholabhai, P. P., Adams, J. B., Crozier, P. & Sharma, R. Oxygen vacancy migration in ceria and Pr-doped ceria: a DFT + U study. J. Chem. Phys. 132, 094104 (2010).

    Article  PubMed  Google Scholar 

  56. Wang, W. et al. Enhanced carbon dioxide electrolysis at redox manipulated interfaces. Nat. Commun. 10, 1550 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Makov, G. & Payne, M. C. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51, 4014–4022 (1995).

    Article  CAS  Google Scholar 

  58. Neugebauer, J. & Scheffler, M. Adsorbate-substrate and adsorbate-adsorbate interactions of Na and K adlayers on Al (111). Phys. Rev. B 46, 16067 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Idaho National Laboratory Laboratory Directed Research & Development Program under the Department of Energy Idaho Operations Office Contract DE-AC07-051D14517. This research made use of Idaho National Laboratory computing resources which are supported by the Office of Nuclear Energy of the U.S. Department of Energy and the Nuclear Science User Facilities under Contract No. DE-AC07-05ID14517. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.This paper describes objective technical results and analysis. Any subjective views or opinions that might be expressed in the paper do not necessarily represent the views of the U.S. Department of Energy or the United States Government.

Author information

Authors and Affiliations

Authors

Contributions

D.D. conceived, designed and supervised the project. M.L. performed the ab initio calculations and proposed the catalyst design concept. M.L. and B.H. developed the catalysts, integrated the electrolysers, performed the characterizations, conducted electrochemical tests and analysed the data. L.-C.W. helped with the GC–MS, H2-TPR and DRIFTS tests. W.W. helped with the cell fabrication. Y.D. and J.D.S. performed the scanning transmission electron microscopy imaging, STEM–EDX and STEM–EELS. J.L. helped with the theoretical calculations and the interpretation. M.L. and B.H. wrote the manuscript and all authors contributed to the revision.

Corresponding author

Correspondence to Dong Ding.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Michal Bajdich and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1–9, Figs. 1–47 and Note 1.

Supplementary Data 1

Atomic coordinates of the most stable Irn clusters (n = 5, 6, 11, 15).

Supplementary Data 2

Atomic coordinates of SDC (110)/Irn and (111)/Irn (n = 1, 5, 6, 11, 15) models used in DFT calculations.

Supplementary Data 3

Atomic coordinates of the initial and final configurations of the trajectories in AIMD simulations.

Source data

Source Data Fig. 2

Gibbs free energies for the CO2 hydrogenation reaction calculated by DFT.

Source Data Fig. 3

Characterization data of XRD patterns, HAADF line profiles, XPS spectra and EELS spectra.

Source Data Fig. 4

Electrochemical measurement data and DRIFTS spectra.

Source Data Fig. 5

Electrochemical measurement data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Hua, B., Wang, LC. et al. Switching of metal–oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nat Catal 4, 274–283 (2021). https://doi.org/10.1038/s41929-021-00590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00590-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing