Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film

Abstract

Efficient electrocatalytic energy conversion requires devices to function reversibly, that is, to deliver a substantial current at a minimal overpotential. Redox-active films can effectively embed and stabilize molecular electrocatalysts, but mediated electron transfer through the film typically makes the catalytic response irreversible. Here we describe a redox-active film for bidirectional (oxidation or reduction) and reversible hydrogen conversion, which consists of [FeFe] hydrogenase embedded in a low-potential, 2,2′-viologen-modified hydrogel. When this catalytic film served as the anode material in a H2/O2 biofuel cell, an open circuit voltage of 1.16 V was obtained—a benchmark value near the thermodynamic limit. The same film also acted as a highly energy efficient cathode material for H2 evolution. We explained the catalytic properties using a kinetic model, which shows that reversibility can be achieved even though intermolecular electron transfer is slower than catalysis. This understanding of reversibility simplifies the design principles of highly efficient and stable bioelectrocatalytic films, advancing their implementation in energy conversion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Redox-active polymers for reversible hydrogenase catalysis.
Fig. 2: Direct and mediated electrochemical responses of the hydrogenase.
Fig. 3: Modelling of the mediated catalytic CVs.
Fig. 4: Reversible hydrogenase electrode for a H2/O2 biofuel cell and electrolyser.

Similar content being viewed by others

Data availability

Source data are provided with this paper and are also available from Zenodo at https://doi.org/10.5281/zenodo.4421107. Source data for the crystal structure of V2 in Supplementary Fig. 5 have been deposited at the Cambridge Crystallographic Data Centre, under CCDC deposition number 2046659.

References

  1. Armstrong, F. A. & Hirst, J. Reversibility and efficiency in electrocatalytic energy conversion and lessons from enzymes. Proc. Natl Acad. Sci. USA 108, 14049–14054 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. Dutta, A., Appel, A. M. & Shaw, W. J. Designing electrochemically reversible H2 oxidation and production catalysts. Nat. Rev. Chem. 2, 244–252 (2018).

    Article  CAS  Google Scholar 

  3. Fourmond, V., Wiedner, E. S., Shaw, W. J. & Léger, C. Understanding and design of bidirectional and reversible catalysts of multielectron, multistep reactions. J. Am. Chem. Soc. 141, 11269–11285 (2019).

    Article  CAS  PubMed  Google Scholar 

  4. Priyadarshani, N. et al. Achieving reversible H2/H+ interconversion at room temperature with enzyme-inspired molecular complexes: a mechanistic study. ACS Catal. 6, 6037–6049 (2016).

    Article  CAS  Google Scholar 

  5. Dutta, A., DuBois, D. L., Roberts, J. A. S. & Shaw, W. J. Amino acid modified Ni catalyst exhibits reversible H2 oxidation/production over a broad pH range at elevated temperatures. Proc. Natl Acad. Sci. USA 111, 16286–16291 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Cunningham, D. W., Barlow, J. M., Velasquez, R. S. & Yang, J. Reversible and selective CO2 to HCO2 electrocatalysis near the thermodynamic potential. Angew. Chem. Int. Ed. 59, 4443–4447 (2019).

    Article  Google Scholar 

  7. Cunningham, D. W. & Yang, J. Y. Kinetic and mechanistic analysis of a synthetic reversible CO2/HCO2 electrocatalyst. Chem. Commun. 56, 12965–12968 (2020).

    Article  CAS  Google Scholar 

  8. Le Goff, A. et al. From hydrogenases to noble metal-free catalytic nanomaterials for H2 production and uptake. Science 326, 1384–1387 (2009).

    Article  PubMed  Google Scholar 

  9. Del Barrio, M. et al. Electrochemical investigations of hydrogenases and other enzymes that produce and use solar fuels. Acc. Chem. Res. 51, 769–777 (2018).

    Article  PubMed  Google Scholar 

  10. Siritanaratkul, B. et al. Transfer of photosynthetic NADP+/NADPH recycling activity to a porous metal oxide for highly specific, electrochemically-driven organic synthesis. Chem. Sci. 8, 4579–4586 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Léger, C. et al. Enzyme electrokinetics: energetics of succinate oxidation by fumarate reductase and succinate dehydrogenase. Biochemistry 40, 11234–11245 (2001).

    Article  PubMed  Google Scholar 

  12. Wang, V. C. C., Can, M., Pierce, E., Ragsdale, S. W. & Armstrong, F. A. A unified electrocatalytic description of the action of inhibitors of nickel carbon monoxide dehydrogenase. J. Am. Chem. Soc. 135, 2198–2206 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bassegoda, A., Madden, C., Wakerley, D. W., Reisner, E. & Hirst, J. Reversible interconversion of CO2 and formate by a molybdenum-containing formate dehydrogenase. J. Am. Chem. Soc. 136, 15473–15476 (2014).

    Article  CAS  PubMed  Google Scholar 

  14. Zu, Y., Shannon, R. J. & Hirst, J. Reversible, electrochemical interconversion of NADH and NAD by the catalytic (Iλ) subcomplex of mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Am. Chem. Soc. 125, 6020–6021 (2003).

    Article  CAS  PubMed  Google Scholar 

  15. McKone, J. R., Lewis, N. S. & Gray, H. B. Will solar-driven water-splitting devices see the light of day? Chem. Mater. 26, 407–414 (2014).

    Article  CAS  Google Scholar 

  16. Helm, M. L., Stewart, M. P., Bullock, R. M., DuBois, M. R. & DuBois, D. L. A synthetic nickel electrocatalyst with a turnover frequency above 100,000 s−1 for H2 production. Science 333, 863–866 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. Hoffert, W. A., Roberts, J. A. S., Morris Bullock, R. & Helm, M. L. Production of H2 at fast rates using a nickel electrocatalyst in water–acetonitrile solutions. Chem. Commun. 49, 7767–7769 (2013).

    Article  CAS  Google Scholar 

  18. Dutta, A., Roberts, J. A. S. & Shaw, W. J. Arginine-containing ligands enhance H2 oxidation catalyst performance. Angew. Chem. Int. Ed. 53, 6487–6491 (2014).

    Article  CAS  Google Scholar 

  19. Cracknell, J. A., Vincent, K. A. & Armstrong, F. A. Enzymes as working or inspirational electrocatalysts for fuel cells and electrolysis. Chem. Rev. 108, 2439–2461 (2008).

    Article  CAS  PubMed  Google Scholar 

  20. Wakerley, D. W. & Reisner, E. Oxygen-tolerant proton reduction catalysis: much O2 about nothing? Energy Environ. Sci. 8, 2283–2295 (2015).

    Article  CAS  Google Scholar 

  21. Cooney, M. J., Svoboda, V., Lau, C., Martin, G. & Minteer, S. D. Enzyme catalysed biofuel cells. Energy Environ. Sci. 1, 320–337 (2008).

    Article  CAS  Google Scholar 

  22. Barton, S. C., Gallaway, J. & Atanassov, P. Enzymatic biofuel cells for implantable and microscale devices. Chem. Rev. 104, 4867–4886 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Leech, D., Kavanagh, P. & Schuhmann, W. Enzymatic fuel cells: recent progress. Electrochim. Acta 84, 223–234 (2012).

    Article  CAS  Google Scholar 

  24. Li, H. et al. Complete protection of O2-sensitive catalysts in thin films. J. Am. Chem. Soc. 141, 16734–16742 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, H. et al. Suppressing hydrogen peroxide generation to achieve oxygen-insensitivity of a [NiFe] hydrogenase in redox active films. Nat. Commun. 11, 920 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Plumeré, N. et al. A redox hydrogel protects hydrogenase from high-potential deactivation and oxygen damage. Nat. Chem. 6, 822–827 (2014).

    Article  PubMed  Google Scholar 

  27. Shiraiwa, S. et al. Reactivation of standard [NiFe]-hydrogenase and bioelectrochemical catalysis of proton reduction and hydrogen oxidation in a mediated-electron-transfer system. Bioelectrochemistry 123, 156–161 (2018).

    Article  CAS  PubMed  Google Scholar 

  28. Yuan, M. et al. Creating a low-potential redox polymer for efficient electroenzymatic CO2 reduction. Angew. Chem. Int. Ed. 57, 6582–6586 (2018).

    Article  CAS  Google Scholar 

  29. Szczesny, J. et al. Electroenzymatic CO2 fixation using redox polymer/enzyme-modified gas diffusion electrodes. ACS Energy Lett. 5, 321–327 (2019).

    Article  Google Scholar 

  30. Sakai, K., Kitazumi, Y., Shirai, O., Takagi, K. & Kano, K. High-power formate/dioxygen biofuel cell based on mediated electron transfer type bioelectrocatalysis. ACS Catal. 7, 5668–5673 (2017).

    Article  CAS  Google Scholar 

  31. Ruth, J. C., Milton, R. D., Gu, W. & Spormann, A. M. Enhanced electrosynthetic hydrogen evolution by hydrogenases embedded in a redox-active hydrogel. Chem. Eur. J. 26, 7323–7329 (2020).

    Article  CAS  PubMed  Google Scholar 

  32. Esselborn, J., Kertess, L., Apfel, U.-P., Hofmann, E. & Happe, T. Loss of specific active-site iron atoms in oxygen-exposed [FeFe]-hydrogenase determined by detailed X-ray structure analyses. J. Am. Chem. Soc. 141, 17721–17728 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Kubas, A. et al. Mechanism of O2 diffusion and reduction in FeFe hydrogenases. Nat. Chem. 9, 88–95 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Oughli, A. A. et al. A redox hydrogel protects the O2-sensitive [FeFe]-hydrogenase from Chlamydomonas reinhardtii from oxidative damage. Angew. Chem. Int. Ed. 54, 12329–12333 (2015).

    Article  CAS  Google Scholar 

  35. Oughli, A. A., Hardt, S., Rüdiger, O., Birrell, J. A. & Plumeré, N. Reactivation of sulfide-protected [FeFe] hydrogenase in a redox-active hydrogel. Chem. Commun. 56, 9958–9961 (2020).

    Article  CAS  Google Scholar 

  36. Gallaway, J. W. & Calabrese Barton, S. A. Kinetics of redox polymer-mediated enzyme electrodes. J. Am. Chem. Soc. 130, 8527–8536 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Cai, R. & Minteer, S. D. Nitrogenase bioelectrocatalysis: from understanding electron-transfer mechanisms to energy applications. ACS Energy Lett. 3, 2736–2742 (2018).

    Article  CAS  Google Scholar 

  38. Tsujimura, S., Fujita, M., Tatsumi, H., Kano, K. & Ikeda, T. Bioelectrocatalysis-based dihydrogen/dioxygen fuel cell operating at physiological pH. Phys. Chem. Chem. Phys. 3, 1331–1335 (2001).

    Article  CAS  Google Scholar 

  39. Lojou, E., Giudici-Orticoni, M. T. & Bianco, P. Direct electrochemistry and enzymatic activity of bacterial polyhemic cytochrome c3 incorporated in clay films. J. Electroanal. Chem. 579, 199–213 (2005).

    Article  CAS  Google Scholar 

  40. Tatsumi, H., Takagi, K., Fujita, M., Kano, K. & Ikeda, T. Electrochemical study of reversible hydrogenase reaction of Desulfovibrio vulgaris cells with methyl viologen as an electron carrier. Anal. Chem. 71, 1753–1759 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Fultz, M. L. & Durst, R. A. Mediator compounds for the electrochemical study of biological redox systems: a compilation. Anal. Chim. Acta 140, 1–18 (1982).

    Article  CAS  Google Scholar 

  42. Alber, K. S., Hahn, T. K., Jones, M. L., Fountain, K. R. & Van Galen, D. A. The electrocatalyzed reduction of fumaronitrile in aqueous solution by 4,4′-dimethyl-1,1′-trimethylene-2,2′-dipyridinium ion. J. Electroanal. Chem. 383, 119–126 (1995).

    Article  Google Scholar 

  43. Li, H. et al. Preventing the coffee-ring effect and aggregate sedimentation by in situ gelation of monodisperse materials. Chem. Sci. 9, 7596–7605 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Buesen, D., Li, H. & Plumeré, N. The electron as a probe to measure the thickness distributions of electroactive films. Chem. Sci. 11, 937–946 (2020).

    Article  CAS  PubMed  Google Scholar 

  45. Caserta, G. et al. Engineering an [FeFe]-hydrogenase: do accessory clusters influence O2 resistance and catalytic bias? J. Am. Chem. Soc. 140, 5516–5526 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Léger, C., Jones, A. K., Roseboom, W., Albracht, S. P. J. & Armstrong, F. A. Enzyme electrokinetics: hydrogen evolution and oxidation by Allochromatium vinosum [NiFe]-hydrogenase. Biochemistry 41, 15736–15746 (2002).

    Article  PubMed  Google Scholar 

  47. Ceccaldi, P., Schuchmann, K., Müller, V. & Elliott, S. J. The hydrogen dependent CO2 reductase: the first completely CO tolerant FeFe-hydrogenase. Energy Environ. Sci. 10, 503–508 (2017).

    Article  CAS  Google Scholar 

  48. Butt, J. N., Filipiak, M. & Hagen, W. R. Direct electrochemistry of Megasphaera elsdenii iron hydrogenase. Definition of the enzyme’s catalytic operating potential and quantitation of the catalytic behaviour over a continuous potential range. Eur. J. Biochem. 245, 116–122 (1997).

    Article  CAS  PubMed  Google Scholar 

  49. Andrieux, C. P., Dumas-Bouchiat, J. M. & Savéant, J. M. Catalysis of electrochemical reactions at redox polymer electrodes: kinetic model for stationary voltammetric techniques. J. Electroanal. Chem. Interfacial Electrochem. 131, 1–35 (1982).

    Article  CAS  Google Scholar 

  50. Bartlett, P. N. & Pratt, K. F. E. Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes Part I: redox mediator entrapped within the film. J. Electroanal. Chem. 397, 61–78 (1995).

    Article  Google Scholar 

  51. Fourmond, V. et al. Mechanism of protection of catalysts supported in redox hydrogel films. J. Am. Chem. Soc. 137, 5494–5505 (2015).

    Article  CAS  PubMed  Google Scholar 

  52. Andrieux, C. P., Dumas-Bouchiat, J. M. & Saveant, J. M. Catalysis of electrochemical reactions at redox polymer electrodes: effect of the film thickness. J. Electroanal. Chem. Interfacial Electrochem. 114, 159–163 (1980).

    Article  CAS  Google Scholar 

  53. Fourmond, V. et al. Steady-state catalytic wave-shapes for 2-electron reversible electrocatalysts and enzymes. J. Am. Chem. Soc. 135, 3926–3938 (2013).

    Article  CAS  PubMed  Google Scholar 

  54. Fourmond, V. & Léger, C. Modelling the voltammetry of adsorbed enzymes and molecular catalysts. Curr. Opin. Electrochem. 1, 110–120 (2017).

    Article  CAS  Google Scholar 

  55. Lampret, O. et al. Interplay between CN ligands and the secondary coordination sphere of the H-cluster in [FeFe]-hydrogenases. J. Am. Chem. Soc. 139, 18222–18230 (2017).

    Article  CAS  PubMed  Google Scholar 

  56. Lalaoui, N., Holzinger, M., Le Goff, A. & Cosnier, S. Diazonium functionalisation of carbon nanotubes for specific orientation of multicopper oxidases: controlling electron entry points and oxygen diffusion to the enzyme. Chem. Eur. J. 22, 10494–10500 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Mazurenko, I., Wang, X., de Poulpiquet, A. & Lojou, E. H2/O2 enzymatic fuel cells: from proof-of-concept to powerful devices. Sustain. Energy Fuels 1, 1475–1501 (2017).

    Article  CAS  Google Scholar 

  58. Dos Santos, L., Climent, V., Blanford, C. F. & Armstrong, F. A. Mechanistic studies of the ‘blue’ Cu enzyme, bilirubin oxidase, as a highly efficient electrocatalyst for the oxygen reduction reaction. Phys. Chem. Chem. Phys. 12, 13962–13974 (2010).

    Article  PubMed  Google Scholar 

  59. Del Barrio, M. et al. Interaction of the H-cluster of FeFe hydrogenase with halides. J. Am. Chem. Soc. 140, 5485–5492 (2018).

    Article  PubMed  Google Scholar 

  60. Ciaccafava, A. et al. Electrochemistry, AFM, and PM-IRRA spectroscopy of immobilized hydrogenase: role of a hydrophobic helix in enzyme orientation for efficient H2 oxidation. Angew. Chem. Int. Ed. 51, 953–956 (2012).

    Article  CAS  Google Scholar 

  61. Xu, L. & Armstrong, F. A. Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H2–air mixtures. Energy Environ. Sci. 6, 2166–2171 (2013).

    Article  CAS  Google Scholar 

  62. Xia, H.-Q. et al. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature. J. Power Sources 335, 105–112 (2016).

    Article  CAS  Google Scholar 

  63. So, K. et al. Direct electron transfer-type dual gas diffusion H2/O2 biofuel cells. J. Mater. Chem. A 4, 8742–8749 (2016).

    Article  CAS  Google Scholar 

  64. Gentil, S. et al. Oriented immobilization of [NiFeSe] hydrogenases on covalently and noncovalently functionalized carbon nanotubes for H2/air enzymatic fuel cells. ACS Catal. 8, 3957–3964 (2018).

    Article  CAS  Google Scholar 

  65. Szczesny, J. et al. A gas breathing hydrogen/air biofuel cell comprising a redox polymer/hydrogenase-based bioanode. Nat. Commun. 9, 4715 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Conzuelo, F., Marković, N., Ruff, A. & Schuhmann, W. The open circuit voltage in biofuel cells: Nernstian shift in pseudocapacitive electrodes. Angew. Chem. Int. Ed. 57, 13681–13685 (2018).

    Article  CAS  Google Scholar 

  67. Singh, M. R., Clark, E. L. & Bell, A. T. Effects of electrolyte, catalyst, and membrane composition and operating conditions on the performance of solar-driven electrochemical reduction of carbon dioxide. Phys. Chem. Chem. Phys. 17, 18924–18936 (2015).

    Article  CAS  PubMed  Google Scholar 

  68. Jouny, M., Luc, W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

    Article  CAS  Google Scholar 

  69. Shleev, S. et al. Oxygen electroreduction versus bioelectroreduction: direct electron transfer approach. Electroanalysis 28, 2270–2287 (2016).

    Article  CAS  Google Scholar 

  70. Sakai, K. et al. Interconversion between formate and hydrogen carbonate by tungsten-containing formate dehydrogenase-catalyzed mediated bioelectrocatalysis. Sens. Bio-Sens. Res. 5, 90–96 (2015).

    Article  Google Scholar 

  71. Léger, C., Lederer, F., Guigliarelli, B. & Bertrand, P. Electron flow in multicenter enzymes: theory, applications, and consequences on the natural design of redox chains. J. Am. Chem. Soc. 128, 180–187 (2006).

    Article  PubMed  Google Scholar 

  72. Birrell, J. A. et al. Artificial maturation of the highly active heterodimeric [FeFe] hydrogenase from Desulfovibrio desulfuricans ATCC 7757. Isr. J. Chem. 56, 852–863 (2016).

    Article  CAS  Google Scholar 

  73. Rodríguez-Maciá, P. et al. Sulfide protects [FeFe] hydrogenases from O2. J. Am. Chem. Soc. 140, 9346–9350 (2018).

    Article  PubMed  Google Scholar 

  74. Bird, C. L. & Kuhn, A. T. Electrochemistry of the viologens. Chem. Soc. Rev. 10, 49–82 (1981).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

C.L. and V.F. are supported by CNRS, Aix Marseille Université, Agence Nationale de la Recherche (ANR-15-CE05–0020), and the Excellence Initiative of Aix-Marseille University-A*MIDEX, a French ‘Investissements d’Avenir’ programme (ANR-11-IDEX-0001–02). N.P., S.H. and S.S. acknowledge financial support from the ERC starting grant 715900, the ANR-DFG project SHIELDS (PL 746/2–1) and RESOLV, funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy (EXC-2033—Projektnummer 390677874). J.A.B. and O.R. are supported by the Max Planck Society and J.A.B. acknowledges funding from the DFG Priority Programme ‘Iron–Sulfur for Life: Cooperative Function of Iron–Sulfur Centers in Assembly, Biosynthesis, Catalysis and Disease’ (SPP 1927) Project BI 2198/1–1. We thank A. Ruff and L. Castaneda-Losada for useful discussions regarding the polymer synthesis, N. Breuer for the preparation of the hydrogenase, B. Mallick for performing the crystal structure measurements, M. Sander and O. Trost for optimizing the fuel cells, A. Czepull for optimizing the film stability, H. Li for help with the CV experiments and T. Stalder for solving the crystal structure. The French authors are part of the French BIC network.

Author information

Authors and Affiliations

Authors

Contributions

N.P., C.L., V.F., J.A.B. and O.R. conceived the research. S.H. and S.S. developed and carried out the synthesis of the polymers, and performed all the electrochemical experiments that involved the polymer. D.T.F. developed and carried out the synthesis of the dendrimer, and performed all the electrochemical experiments that involved the dendrimer. S.H. contributed with the fuel cell and electrolyser experiments. O.R. contributed with the DET experiments. V.F. performed the electrochemical modelling and data analysis. J.A.B. contributed the hydrogenase. All the authors contributed to writing the manuscript.

Corresponding authors

Correspondence to Christophe Léger or Nicolas Plumeré.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Kenji Kano and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Notes 1 and 2, and Figs. 1–55.

Reporting Summary

Supplementary Data 1

Crystal structure of compound V2.

Source data

Source Data Fig. 2

Experimental and statistical source data.

Source Data Fig. 3

Experimental, statistical and calculated source data.

Source Data Fig. 4

Experimental and statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hardt, S., Stapf, S., Filmon, D.T. et al. Reversible H2 oxidation and evolution by hydrogenase embedded in a redox polymer film. Nat Catal 4, 251–258 (2021). https://doi.org/10.1038/s41929-021-00586-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00586-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing