Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly efficient additive-free dehydrogenation of neat formic acid

Abstract

Formic acid (FA) is a promising hydrogen carrier that can play an instrumental role in the overall implementation of a hydrogen economy. In this regard, it is important to generate H2 gas from neat FA without any solvent and/or additive, for which existing systems are scarce. Here we report the remarkable catalytic activity of a ruthenium 9H-acridine pincer complex for this process. The catalyst is unusually stable and robust in FA, even at high temperatures, and can catalyse neat FA dehydrogenation for over a month, with a total turnover number of 1,701,150. It can also generate high H2/CO2 gas pressures from neat FA (tested up to 100 bars). Mechanistic investigations and density functional theory studies are conducted to fully understand the molecular mechanism of the process. Overall, the high activity, stability, selectivity, simplicity and versatility of the system to generate a CO-free H2/CO2 gas stream and high pressure from neat FA makes it promising for large-scale implementation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different aspects of the catalytic activity of 1 in the dehydrogenation of neat FA.
Fig. 2: Dehydrogenation of different grades of FA.
Fig. 3: Mechanistic studies.
Fig. 4: Mechanistic cycle.
Fig. 5: DFT-calculated energy profile for FA dehydrogenation catalysed by 1.
Fig. 6: DFT-optimized structure of 1a-fac.
Fig. 7: Comparison of the catalytic activity of 1, 1e and 1-Cl towards neat FA dehydrogenation.

Similar content being viewed by others

Data availability

Synthetic procedures, NMR spectra and characterization data for all the new compounds are available within this article and its Supplementary Information. The X-ray crystallographic coordinates for the structure reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC), under deposition number CCDC 2011708. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/structures. DFT-optimized geometries of atomistic models are provided as part of the Supplementary Data. Any further relevant data are available from the authors upon reasonable request.

References

  1. Trends in Atmospheric Carbon Dioxide (Global Monitoring Laboratory; accessed 26 April 2020); http://www.esrl.noaa.gov/gmd/ccgg/trends/

  2. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12 (Cambridge Univ. Press, 2013).

  3. Butler, C. D. Climate change, health and existential risks to civilization: a comprehensive review (1989–2013). Int. J. Environ. Res. Public Health 15, 2266 (2018).

    Article  PubMed Central  Google Scholar 

  4. Owusu, P. A. & Asumadu-Sarkodie, S. A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3, 1167990 (2016).

    Article  Google Scholar 

  5. Obama, B. The irreversible momentum of clean energy. Science 355, 126–129 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. The Hydrogen Economy: A Non-Techncal Review (UNEP, 2006).

  7. Brandon, N. P. & Kurban, Z. Clean energy and the hydrogen economy. Phil. Trans. R. Soc. A 375, 20160400 (2017).

    Article  PubMed  Google Scholar 

  8. Preuster, P., Papp, C. & Wasserscheid, P. Liquid organic hydrogen carriers (LOHCs): toward a hydrogen-free hydrogen economy. Acc. Chem. Res. 50, 74–85 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Niermann, M., Drünert, S., Kaltschmitt, M. & Bonhoff, K. Liquid organic hydrogen carriers (LOHCs)—techno-economic analysis of LOHCs in a defined process chain. Energy Environ. Sci. 12, 290–307 (2019).

    Article  CAS  Google Scholar 

  10. Kawanami, H., Himeda, Y. & Laurenczy, G. in Advanced Inorganic Chemistry Vol. 70 (eds van Eldik, R. & Hubbard, C. D.) 395–427 (Academic, 2017).

  11. Eppinger, J. & Huang, K.-W. Formic acid as a hydrogen energy carrier. ACS Energy Lett. 2, 188–195 (2017).

    Article  CAS  Google Scholar 

  12. van Putten, R., Wissink, T., Swinkels, T. & Pidko, E. A. Fuelling the hydrogen economy: scale-up of an integrated formic acid-to-power system. Int. J. Hydrogen Energy 44, 28533–28541 (2019).

    Article  Google Scholar 

  13. Thomas, S. CO2-based hydrogen storage: CO2 hydrogenation to formic acid, formaldehyde and methanol. Phys. Sci. Rev. 3, 20170015 (2018).

    Google Scholar 

  14. Praveenkumar, U. & Vivek, S. Carbon sequestration: hydrogenation of CO2 to formic acid. Present Environ. Sustain. Dev. 10, 13–34 (2016).

    Article  Google Scholar 

  15. Bulushev, D. A. & Ross, J. R. H. Towards sustainable production of formic acid. ChemSusChem 11, 821–836 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Valentini, F. et al. Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy Environ. Sci. 12, 2646–2664 (2019).

    Article  CAS  Google Scholar 

  17. Coffey, R. S. The decomposition of formic acid catalysed by soluble metal complexes. J. Chem. Soc. Chem. Commun. 1967, 923a (1967).

    Google Scholar 

  18. Mellmann, D., Sponholz, P., Junge, H. & Beller, M. Formic acid as a hydrogen storage material—development of homogeneous catalysts for selective hydrogen release. Chem. Soc. Rev. 45, 3954–3988 (2016).

    Article  CAS  PubMed  Google Scholar 

  19. Sordakis, K. et al. Homogeneous catalysis for sustainable hydrogen storage in formic acid and alcohols. Chem. Rev. 118, 372–433 (2017).

    Article  PubMed  Google Scholar 

  20. Onishi, N. et al. Development of effective catalysts for hydrogen storage technology using formic acid. Adv. Energy Mater. 9, 1801275 (2019).

    Article  Google Scholar 

  21. Guan, C., Pan, Y., Zhang, T., Ajitha, M. J. & Huang, K.-W. An update on formic acid dehydrogenation by homogeneous catalysis. Chem. Asian J. 15, 937–946 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Zell, T. & Langer, R. CO2-based hydrogen storage—formic acid dehydrogenation. Phys. Sci. Rev. 3, 20170012 (2018).

    Google Scholar 

  23. Loges, B., Boddien, A., Junge, H. & Beller, M. Controlled generation of hydrogen from formic acid amine adducts at room temperature and application in H2/O2 fuel cells. Angew. Chem. Int. Ed. 47, 3962–3965 (2008).

    Article  CAS  Google Scholar 

  24. Boddien, A. et al. Continuous hydrogen generation from formic acid: highly active and stable ruthenium catalysts. Adv. Synth. Catal. 351, 2517–2520 (2009).

    Article  CAS  Google Scholar 

  25. Mellone, I. et al. Formic acid dehydrogenation catalysed by ruthenium complexes bearing the tripodal ligands triphos and NP3. Dalton Trans. 42, 2495–2501 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Wang, W.-H. et al. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight. ChemSusChem 7, 1976–1983 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Léval, A. et al. Hydrogen production from formic acid catalyzed by a phosphine free manganese complex: investigation and mechanistic insights. Green Chem. 22, 913–920 (2020).

    Article  Google Scholar 

  28. Anderson, N. H., Boncella, J. & Tondreau, A. M. Manganese-mediated formic acid dehydrogenation. Chem. Eur. J. 25, 10557–10560 (2019).

    Article  CAS  PubMed  Google Scholar 

  29. Mellone, I. et al. Selective formic acid dehydrogenation catalyzed by Fe–PNP pincer complexes based on the 2,6-diaminopyridine scaffold. Organometallics 35, 3344–3349 (2016).

    Article  CAS  Google Scholar 

  30. Curley, J. B., Smith, N. E., Bernskoetter, W. H., Hazari, N. & Mercado, B. Q. Catalytic formic acid dehydrogenation and CO2 hydrogenation using Iron PNRP pincer complexes with isonitrile ligands. Organometallics 37, 3846–3853 (2018).

    Article  CAS  Google Scholar 

  31. Zell, T., Butschke, B., Ben-David, Y. & Milstein, D. Efficient hydrogen liberation from formic acid catalyzed by a well-defined iron pincer complex under mild conditions. Chem. Eur. J. 19, 8068–8072 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Bielinski, E. A. et al. Lewis acid-assisted formic acid dehydrogenation using a pincer-supported iron catalyst. J. Am. Chem. Soc. 136, 10234–10237 (2014).

    Article  CAS  PubMed  Google Scholar 

  33. Curley, J. B., Bernskoetter, W. H. & Hazari, N. Additive-free formic acid dehydrogenation using a pincer-supported iron catalyst. ChemCatChem 12, 1934–1938 (2020).

    Article  CAS  Google Scholar 

  34. Bertini, F., Mellone, I., Ienco, A., Peruzzini, M. & Gonsalvi, L. Iron(ii) complexes of the linear rac-tetraphos-1 ligand as efficient homogeneous catalysts for sodium bicarbonate hydrogenation and formic acid dehydrogenation. ACS Catal. 5, 1254–1265 (2015).

    Article  CAS  Google Scholar 

  35. Fellay, C., Dyson, P. J. & Laurenczy, G. A viable hydrogen-storage system based on selective formic acid decomposition with a ruthenium catalyst. Angew. Chem. Int. Ed. 47, 3966–3968 (2008).

    Article  CAS  Google Scholar 

  36. Fellay, C., Yan, N., Dyson, P. J. & Laurenczy, G. Selective formic acid decomposition for high-pressure hydrogen generation: a mechanistic study. Chem. Eur. J. 15, 3752–3760 (2009).

    Article  CAS  PubMed  Google Scholar 

  37. Hull, J. F. et al. Reversible hydrogen storage using CO2 and a proton-switchable iridium catalyst in aqueous media under mild temperatures and pressures. Nat. Chem. 4, 383–388 (2012).

    Article  CAS  PubMed  Google Scholar 

  38. Kanega, R. et al. CO2 hydrogenation and formic acid dehydrogenation using Ir catalysts with amide-based ligands. Organometallics 39, 1519–1531 (2020).

    Article  CAS  Google Scholar 

  39. Czaun, M. et al. Iridium-catalyzed continuous hydrogen generation from formic acid and its subsequent utilization in a fuel cell: toward a carbon neutral chemical energy storage. ACS Catal. 6, 7475–7484 (2016).

    Article  CAS  Google Scholar 

  40. Guan, C. et al. Dehydrogenation of formic acid catalyzed by a ruthenium complex with an N,N′-diimine ligand. Inorg. Chem. 56, 438–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Zhong, H. et al. Formic acid-based liquid organic hydrogen carrier system with heterogeneous catalysts. Adv. Sustain. Syst. 2, 1700161 (2018).

    Article  Google Scholar 

  42. Zhang, L., Wu, W., Jiang, Z. & Fang, T. A review on liquid-phase heterogeneous dehydrogenation of formic acid: recent advances and perspectives. Chem. Pap. 72, 2121–2135 (2018).

    Article  CAS  Google Scholar 

  43. Celaje, J. J. A. et al. A prolific catalyst for dehydrogenation of neat formic acid. Nat. Commun. 7, 11308 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang, S., Huang, H., Roisnel, T., Bruneau, C. & Fischmeister, C. Base-free dehydrogenation of aqueous and neat formic acid with iridium(iii) Cp*(dipyridylamine) catalysts. ChemSusChem 12, 179–184 (2019).

    Article  CAS  PubMed  Google Scholar 

  45. Himeda, Y. Highly efficient hydrogen evolution by decomposition of formic acid using an iridium catalyst with 4,4′-dihydroxy-2,2′-bipyridine. Green Chem. 11, 2018–2022 (2009).

    Article  CAS  Google Scholar 

  46. Cohen, S. et al. Ir(iii)-PC(sp3)P bifunctional catalysts for production of H2 by dehydrogenation of formic acid: experimental and theoretical study. ACS Catal. 7, 8139–8146 (2017).

    Article  CAS  Google Scholar 

  47. Gunanathan, C., Gnanaprakasam, B., Iron, M. A., Shimon, L. J. W. & Milstein, D. ‘Long-range’ metal–ligand cooperation in H2 activation and ammonia-promoted hydride transfer with a ruthenium–acridine pincer complex. J. Am. Chem. Soc. 132, 14763–14765 (2010).

    Article  CAS  PubMed  Google Scholar 

  48. Tang, S., Ben-David, Y. & Milstein, D. Oxidation of alkenes by water with H2 liberation. J. Am. Chem. Soc. 142, 5980–5984 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles (US Department of Energy, accessed May 16, 2020); https://www.energy.gov/eere/fuelcells/doe-technical-targets-onboard-hydrogen-storage-light-duty-vehicles

  50. Hietala, J. et al. in Ullmann’s Encyclopedia of Industrial Chemistry 7th edn (eds Bellussi, G. et al.) (2016); https://doi.org/10.1002/14356007.a12_013.pub3

  51. Marenich, A. V., Cramer, C. J. & Truhlar, D. G. Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Yang, X. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer. Dalton Trans. 42, 11987–11991 (2013).

    Article  CAS  PubMed  Google Scholar 

  53. Xie, Y., Ben-David, Y., Shimon, L. J. W. & Milstein, D. highly efficient process for production of biofuel from ethanol catalyzed by ruthenium pincer complexes. J. Am. Chem. Soc. 138, 9077–9080 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Chauvier, C., Tlili, A., Das Neves Gomes, C., Thuéry, P. & Cantat, T. Metal-free dehydrogenation of formic acid to H2 and CO2 using boron-based catalysts. Chem. Sci. 6, 2938–2942 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao, Y. & Truhlar, D. G. A new local density functional for main-group thermochemistry, transition metal bonding, thermochemical kinetics, and noncovalent interactions. J. Chem. Phys. 125, 194101 (2006).

    Article  PubMed  Google Scholar 

  56. Weigend, F. & Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy. Phys. Chem. Chem. Phys. 7, 3297–3305 (2005).

    Article  CAS  PubMed  Google Scholar 

  57. Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 8, 1057–1065 (2006).

    Article  CAS  PubMed  Google Scholar 

  58. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  59. Mardirossian, N. & Head-Gordon, M. ωB97M-V: a combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation. J. Chem. Phys. 144, 214110 (2016).

    Article  PubMed  Google Scholar 

  60. Vydrov, O. A. & Van Voorhis, T. Nonlocal van der Waals density functional: the simpler the better. J. Chem. Phys. 133, 244103 (2010).

    Article  PubMed  Google Scholar 

  61. Hujo, W. & Grimme, S. Performance of the van der Waals density functional VV10 and (hybrid)GGA variants for thermochemistry and noncovalent Interactions. J. Chem. Theory Comput. 7, 3866–3871 (2011).

    Article  CAS  PubMed  Google Scholar 

  62. Hellweg, A., Hättig, C., Höfener, S. & Klopper, W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc. 117, 587–597 (2007).

    Article  CAS  Google Scholar 

  63. Bruffaerts, J., von Wolff, N., Diskin-Posner, Y., Ben-David, Y. & Milstein, D. Formamides as isocyanate surrogates: a mechanistically driven approach to the development of atom-efficient, selective catalytic syntheses of ureas, carbamates, and heterocycles. J. Am. Chem. Soc. 141, 16486–16493 (2019).

    Article  CAS  PubMed  Google Scholar 

  64. Frisch, M. J. et al. Gaussian 16 Rev. C.01 (Gaussion Inc., 2016).

  65. Neese, F. Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8, e1327 (2018).

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the European Research Council (ERC AdG 692775). D.M. holds the Israel Matz Professorial Chair of Organic Chemistry. S.K. acknowledges the Sustainability and Energy Research Initiative (SAERI) of the Weizmann Institute of Science for a research fellowship. M.R. acknowledges the Zuckerman STEM Leadership Program for a research fellowship. S.K. thanks M. Montag for useful discussions and for carefully proofreading the manuscript. M.R. thanks N. von Wolff and M. Iron for computational assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.M. and S.K. conceived and directed the project and designed the experiments. S.K. performed and analysed the experiments. M.R. performed the computational studies and provided important insights regarding reaction mechanisms. G.L. performed experiments and analysed data for the X-ray structure determination. Y.B.-D. synthesized the PNP ligand used in this study. S.K., M.R. and D.M. prepared the manuscript.

Corresponding author

Correspondence to David Milstein.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks Kuo-Wei Huang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–51, Tables 1–7, Methods, Notes and Discussions.

Supplementary Data 1

Crystallographic data.

Supplementary Data 2

Computational data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kar, S., Rauch, M., Leitus, G. et al. Highly efficient additive-free dehydrogenation of neat formic acid. Nat Catal 4, 193–201 (2021). https://doi.org/10.1038/s41929-021-00575-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-021-00575-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing