Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction

An Author Correction to this article was published on 24 March 2021

This article has been updated

Abstract

An efficient catalyst for the hydrogen oxidation reaction (HOR) must maintain an oxide-free metal surface in a relatively high potential range. This requirement automatically excludes ruthenium because it is susceptible to oxidation in the hydrogen adsorption/desorption potential region. Herein we report Ru clusters partially confined in the lattice of urchin-like TiO2 crystals (Ru@TiO2) that can effectively catalyse the HOR up to a potential of 0.9 VRHE with a mass activity higher than that of a PtRu catalyst under both acidic and basic conditions. Moreover, the HOR activity of this Ru@TiO2 catalyst is not affected by 1,000 ppm CO impurity. Even at a high CO content of 10 vol%, Ru@TiO2 still selectively catalyses the HOR. Confined Ru clusters grow along the lattice of TiO2 with abundant Ru–Ti bond formation. Such atomically connected co-crystals offer efficient electron penetration from electron-rich TiO2 to Ru metal, leading to sluggish CO adsorption kinetics during the HOR.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: X-ray diffraction.
Fig. 2: Electron microscopy of TiO2 and Ru@TiO2.
Fig. 3: HRTEM and HAADF-STEM of Ru@TiO2.
Fig. 4: The catalytic performance for HOR.
Fig. 5: The catalytic performance for HOR in the presence of CO.
Fig. 6: XPS and EXAFS spectra of the produced catalysts.
Fig. 7: Steady stability testing of the catalysts for the HOR.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Change history

References

  1. Cong, Y., Yi, B. & Song, Y. Hydrogen oxidation reaction in alkaline media: from mechanism to recent electrocatalysts. Nano Energy 44, 288–303 (2018).

    Article  CAS  Google Scholar 

  2. Sheng, W. et al. Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Environ. Sci. 7, 1719–1724 (2014).

    Article  CAS  Google Scholar 

  3. Asazawa, K. et al. A platinum-free zero-carbon-emission easy fuelling direct hydrazine fuel cell for vehicles. Angew. Chem. Int. Ed. 119, 8170–8173 (2007).

    Article  Google Scholar 

  4. Ohyama, J., Sato, T. & Satsuma, A. High performance of Ru nanoparticles supported on carbon for anode electrocatalyst of alkaline anion exchange membrane fuel cell. J. Power Sources 225, 311–315 (2013).

    Article  CAS  Google Scholar 

  5. Shi, G. Y., Yano, H., Tryk, D. A., Watanabe, M. & Uchida, H. A novel Pt–Co alloy hydrogen anode catalyst with superlative activity, CO-tolerance and robustness. Nanoscale 8, 13893–13897 (2016).

    Article  CAS  Google Scholar 

  6. Shi, G. Y., Yano, H., Tryk, D. A., Iiyarna, A. & Uchida, H. Highly active, CO-tolerant, and robust hydrogen anode catalysts: Pt–M (M = Fe, Co, Ni) alloys with stabilized Pt-skin layers. ACS Catal. 7, 267–274 (2017).

    Article  CAS  Google Scholar 

  7. Ham, D. J., Kim, Y. K., Han, S. H. & Lee, J. S. Pt/WC as an anode catalyst for PEMFC: activity and CO tolerance. Catal. Today 132, 117–122 (2008).

    Article  CAS  Google Scholar 

  8. Hydrogen Council. Hydrogen scaling up. https://hydrogencouncil.com/en/study-hydrogen-scaling-up/ (2017).

  9. Davydova, E. S., Mukerjee, S., Jaouen, F & Dekel, D. R. Electrocatalysts for hydrogen oxidation reaction in alkaline electrolytes. ACS Catal. 8, 6665–6690 (2018).

    Article  CAS  Google Scholar 

  10. Bellini, M. et al. Palladium–ceria catalysts with enhanced alkaline hydrogen oxidation activity for anion exchange membrane. Fuel Cells ACS Appl. Energy Mater. 2, 4999–5008 (2019).

    Article  CAS  Google Scholar 

  11. Wang, R., Li, D., Maurya, S., Kim, Y. S. & Wu, Y. Ultrafine Pt cluster and RuO2 heterojunction anode catalysts designed for ultra-low Pt-loading anion exchange membrane fuel cells. Nanoscale Horiz. 5, 316–324 (2019).

    Article  Google Scholar 

  12. Miller, H. et al. A Pd/C–CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew. Chem. Int. Ed. 128, 6108–6111 (2016).

    Article  Google Scholar 

  13. Yu, H. et al. Palladium–ceria nanocatalyst for hydrogen oxidation in alkaline media: optimization of the Pd–CeO2 interface. Nano Energy 57, 820–826 (2019).

    Article  CAS  Google Scholar 

  14. Davydova, E., Zaffran, J., Dhaka, K., Toroker, M. & Dekel, D. Hydrogen oxidation on Ni-based electrocatalysts: the effect of metal doping. Catalysts 8, 454 (2018).

    Article  Google Scholar 

  15. Obradovic, M. D. et al. The kinetics of the hydrogen oxidation reaction on WC/Pt catalyst with low content of Pt nano-particles. J. Electroanal. Chem. 671, 24–32 (2012).

    Article  CAS  Google Scholar 

  16. Lu, S. Q. & Zhuang, Z. B. Investigating the influences of the adsorbed species on catalytic activity for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 139, 5156–5163 (2017).

    Article  CAS  Google Scholar 

  17. Hu, J., Kuttiyiel, K. A., Sasaki, K., Zhang, C. X. & Adzic, R. R. Determination of hydrogen oxidation reaction mechanism based on Pt–Had energetics in alkaline electrolyte. J. Electrochem. Soc. 165, J3355–J3362 (2018).

    Article  CAS  Google Scholar 

  18. Sheng, W. C. et al. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 6, 1–6 (2015).

    Article  Google Scholar 

  19. Wang, L., Zhou, Y., Yang, Y., Subramanian, A. & Rafailovich, M. Suppression of carbon monoxide poisoning in proton exchange membrane fuel cells via gold nanoparticle/titania ultrathin film heterogeneous catalysts. ACS Appl. Energy Mater. 2, 3479–3487 (2019).

    Article  CAS  Google Scholar 

  20. Liu, Z., Ling, X. Y., Su, X. & Lee, J. Y. Carbon-supported Pt and PtRu nanoparticles as catalysts for a direct methanol fuel cell. J. Phys. Chem. B 108, 8234–8240 (2004).

    Article  CAS  Google Scholar 

  21. St. John, S. et al. Ruthenium-alloy electrocatalysts with tunable hydrogen oxidation kinetics in alkaline electrolyte. J. Phys. Chem. C 119, 13481–13487 (2015).

    Article  Google Scholar 

  22. Zheng, J., Sheng, W. C., Zhuang, Z. B., Xu, B. J. & Yan, Y. S. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci. Adv. 2, e1501602–e1501602 (2016).

    Article  Google Scholar 

  23. Rebollar, L., Intikhab, S., Snyder, J. D. & Tang, M. H. Determining the viability of hydroxide-mediated bifunctional HER/HOR mechanisms through single-crystal voltammetry and microkinetic modeling. J. Electrochem. Soc. 165, J3209–J3221 (2018).

    Article  CAS  Google Scholar 

  24. Gasteiger, H. A., Markovic, N. M. & Ross, P. N. J. T. Jo. P. C. Jr H2 and CO electrooxidation on well-characterized Pt, Ru, and Pt–Ru. 1. Rotating disk electrode studies of the pure gases including temperature effects. J. Phys. Chem. B 99, 8290–8301 (1995).

    Article  CAS  Google Scholar 

  25. Takeguchi, T. et al. Evidence of nonelectrochemical shift reaction on a CO-tolerant high-entropy state Pt–Ru anode catalyst for reliable and efficient residential fuel cell systems. J. Am. Chem. Soc. 134, 14508–14512 (2012).

    Article  CAS  Google Scholar 

  26. Wang, Y. et al. Pt–Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Environ. Sci. 8, 177–181 (2015).

    Article  CAS  Google Scholar 

  27. Li, J. K. et al. Experimental proof of the bifunctional mechanism for the hydrogen oxidation in alkaline media. Angew. Chem. Int. Ed. 56, 15594–15598 (2017).

    Article  CAS  Google Scholar 

  28. Wang, J. X., Zhang, Y., Capuano, C. B. & Ayers, K. E. Ultralow charge-transfer resistance with ultralow Pt loading for hydrogen evolution and oxidation using Ru@Pt core–shell nanocatalysts. Sci. Rep. 5, 12220 (2015).

    Article  CAS  Google Scholar 

  29. Schwämmlein, J. N., Rheinländer, P. J., Chen, Y., Freyer, K. T. & Gasteiger, H. A. Anode aging during PEMFC start-up and shut-down: H2–air fronts vs voltage cycles. J. Electrochem. Soc. 165, F1312–F1322 (2018).

    Article  Google Scholar 

  30. Ohyama, J. et al. Size specifically high activity of Ru nanoparticles for hydrogen oxidation reaction in alkaline electrolyte. J. Am. Chem. Soc. 135, 8016–8021 (2013).

    Article  CAS  Google Scholar 

  31. Mei, Q. S. & Lu, K. Melting and superheating of crystalline solids: from bulk to nanocrystals. Prog. Mater. Sci. 52, 1175–1262 (2007).

    Article  CAS  Google Scholar 

  32. Strmcnik, D. et al. Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat. Chem. 5, 300–306 (2013).

    Article  CAS  Google Scholar 

  33. Abdel-Mageed, A. M., Widmann, D., Olesen, S. E., Chorkendorff, I. & Behm, R. J. Selective CO methanation on highly active Ru/TiO2 catalysts: identifying the physical origin of the observed activation/deactivation and loss in selectivity. ACS Catal. 8, 5399–5414 (2018).

    Article  CAS  Google Scholar 

  34. Nong, S. et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 140, 5719–5727 (2018).

    Article  CAS  Google Scholar 

  35. Hammer, B. & Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 45, 71–129 (2000).

    CAS  Google Scholar 

  36. Kitchin, J. R., Norskov, J. K., Barteau, M. A. & Chen, J. G. Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J. Chem. Phys. 120, 10240–10246 (2004).

    Article  CAS  Google Scholar 

  37. Christoffersen, E., Liu, P., Ruban, A., Skriver, H. L. & Nørskov, J. K. Anode materials for low-temperature fuel cells: a density functional theory study. J. Catal. 199, 123–131 (2001).

    Article  CAS  Google Scholar 

  38. Koper, M. T. Hydrogen electrocatalysis: a basic solution. Nat. Chem. 5, 255–256 (2013).

    Article  CAS  Google Scholar 

  39. Yu, Xin et al. One-step synthesis of ultrathin nanobelts-assembled urchin-like anatase TiO2 nanostructures for highly efficient photocatalysis. CrystEngComm 19, 129–136 (2017).

    Article  CAS  Google Scholar 

  40. Ding, W. et al. Space-confinement-induced synthesis of pyridinic-and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. Int. Ed. 52, 11755–11759 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Natural Science Foundation of China (91834301, 21776024 and 21761162015).

Author information

Authors and Affiliations

Authors

Contributions

W.D. and Z.W. directed the project. Y.Z. performed the main experimental works. Z.X., J.W., X.S. and Q.H. participated in some of the experimental work. W.D. and Y.Z. analysed the data. J.J. participated in the analysis of the XAS data. All the authors discussed the results. W.D., Y.Z. and Z.W. wrote the manuscript together.

Corresponding authors

Correspondence to Wei Ding or Zidong Wei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16 and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Xie, Z., Jiang, J. et al. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat Catal 3, 454–462 (2020). https://doi.org/10.1038/s41929-020-0446-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0446-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing