Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Real-time fluorescence imaging of a heterogeneously catalysed Suzuki–Miyaura reaction

Abstract

The palladium-catalysed Suzuki–Miyaura reaction is one of the most important methods for C–C cross-coupling, yet the heterogeneous version of this reaction remains poorly understood. More specifically, the question of whether the reaction occurs on the surface of the catalyst (heterogeneous process) or is promoted by leaching of palladium species in solution (homogeneous phase) is still under debate. Here, we use real-time high spatial resolution microscopy to monitor a palladium-catalysed coupling reaction that produces a highly fluorescent BODIPY dye. We show catalyst migration during the reaction, which we attribute to a dissolution/redeposition mechanism where migrating palladium species become true active sites after attachment to the catalyst support. The observed process is heterogeneous, but the active catalysts (atoms or small clusters) have important mobility, as revealed by the observation of migrating catalytic sites. Our report shows the strength of single-molecule studies for unveiling fundamental mechanisms in heterogeneously catalysed reactions that are otherwise difficult to explore with classical ensemble experiments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Analysis of the Suzuki–Miyaura cross-coupling reaction.
Fig. 2: Localization of reactant and product emission bursts.
Fig. 3: Effect of base on the residence time (τon) for SMCC reaction and BT-BODIPY.
Fig. 4: Active catalytic site mobility within Pd@TiO2 aggregates.
Fig. 5: Active catalytic site migration from Pd@TiO2 to pristine TiO2.

Data availability

The data supporting the findings of this study are available in the paper and its Supplementary Information; further data are available from the corresponding author on reasonable request.

References

  1. Miyaura, N. & Suzuki, A. Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem. Rev. 95, 2457–2483 (1995).

    CAS  Google Scholar 

  2. Torborg, C. & Beller, M. Recent applications of palladium-catalyzed coupling reactions in the pharmaceutical, agrochemical, and fine chemical industries. Adv. Synth. Catal. 351, 3027–3043 (2009).

    CAS  Google Scholar 

  3. Astruc, D., Lu, F. & Aranzaes, J. R. Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew. Chem. Int. Ed. Engl. 44, 7852–7872 (2005).

    CAS  PubMed  Google Scholar 

  4. Astruc, D. Nanoparticles and Catalysis (Wiley-VCH, 2008).

  5. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    CAS  PubMed  Google Scholar 

  6. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    CAS  Google Scholar 

  7. Zhang, H., Liu, G., Shi, L. & Ye, J. Single-atom catalysts: emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 8, 1701343 (2018).

    Google Scholar 

  8. Fihri, A., Bouhrara, M., Nekoueishahraki, B., Basset, J.-M. & Polshettiwar, V. Nanocatalysts for Suzuki cross-coupling reactions. Chem. Soc. Rev. 40, 5181–5203 (2011).

    CAS  PubMed  Google Scholar 

  9. Pérez-Lorenzo, M. Palladium nanoparticles as efficient catalysts for Suzuki cross-coupling reactions. J. Phys. Chem. Lett. 3, 167–174 (2012).

    Google Scholar 

  10. Phan, N. T. S., Van Der Sluys, M. & Jones, C. W. On the nature of the active species in palladium catalyzed Mizoroki–Heck and Suzuki–Miyaura couplings—homogeneous or heterogeneous catalysis, a critical review. Adv. Synth. Catal. 348, 609–679 (2006).

    CAS  Google Scholar 

  11. Gaikwad, A. V., Holuigue, A., Thathagar, M. B., ten Elshof, J. E. & Rothenberg, G. Ion- and atom-leaching mechanisms from palladium nanoparticles in cross-coupling reactions. Chem. Eur. J. 13, 6908–6913 (2007).

    CAS  PubMed  Google Scholar 

  12. Schmidt, A. F. & Kurokhtina, A. A. Distinguishing between the homogeneous and heterogeneous mechanisms of catalysis in the Mizoroki–Heck and Suzuki–Miyaura reactions: problems and prospects. Kinet. Catal. 53, 714–730 (2012).

    CAS  Google Scholar 

  13. Sigeev, A. S., Peregudov, A. S., Cheprakov, A. V. & Beletskaya, I. P. The palladium slow-release pre-catalysts and nanoparticles in the “phosphine-free” Mizoroki–Heck and Suzuki–Miyaura reactions. Adv. Synth. Catal. 357, 417–429 (2015).

    CAS  Google Scholar 

  14. Lee, A. F., Ellis, P. J., Fairlamb, I. J. S. & Wilson, K. Surface catalysed Suzuki–Miyaura cross-coupling by Pd nanoparticles: an operando XAS study. Dalton Trans. 39, 10473–10482 (2010).

    CAS  PubMed  Google Scholar 

  15. Ellis, P. J., Fairlamb, I. J. S., Hackett, S. F. J., Wilson, K. & Lee, A. F. Evidence for the surface-catalyzed Suzuki–Miyaura reaction over palladium nanoparticles: an operando XAS study. Angew. Chem. Int. Ed. Engl. 49, 1820–1824 (2010).

    CAS  PubMed  Google Scholar 

  16. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    CAS  PubMed  Google Scholar 

  17. Eggeling, C., Fries, J. R., Brand, L., Günther, R. & Seidel, C. A. M. Monitoring conformational dynamics of a single molecule by selective fluorescence spectroscopy. Proc. Natl Acad. Sci. USA 95, 1556–1561 (1998).

    CAS  PubMed  Google Scholar 

  18. Cordes, T. & Blum, S. A. Opportunities and challenges in single-molecule and single-particle fluorescence microscopy for mechanistic studies of chemical reactions. Nat. Chem. 5, 993–999 (2013).

    CAS  PubMed  Google Scholar 

  19. De Cremer, G., Sels, B. F., De Vos, D. E., Hofkens, J. & Roeffaers, M. B. J. Fluorescence micro(spectro)scopy as a tool to study catalytic materials in action. Chem. Soc. Rev. 39, 4703–4717 (2010).

    PubMed  Google Scholar 

  20. Zhang, Y., Chen, T., Song, P. & Xu, W. Recent progress on single-molecule nanocatalysis based on single-molecule fluorescence microscopy. Sci. Bull. 62, 290–301 (2017).

    Google Scholar 

  21. Tachikawa, T., Wang, N., Yamashita, S., Cui, S.-C. & Majima, T. Design of a highly sensitive fluorescent probe for interfacial electron transfer on a TiO2 surface. Angew. Chem. Int. Ed. Engl. 49, 8593–8597 (2010).

    CAS  PubMed  Google Scholar 

  22. Scaiano, J. C. & Lanterna, A. E. Is single-molecule fluorescence spectroscopy ready to join the organic chemistry toolkit? A test case involving click chemistry. J. Org. Chem. 82, 5011–5019 (2017).

    CAS  PubMed  Google Scholar 

  23. Chen, T. et al. Catalytic kinetics of different types of surface atoms on shaped Pd nanocrystals. Angew. Chem. Int. Ed. Engl. 55, 1839–1843 (2016).

    CAS  PubMed  Google Scholar 

  24. Xu, W., Kong, J. S., Yeh, Y.-T. E. & Chen, P. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics. Nat. Mater. 7, 992–996 (2008).

    CAS  PubMed  Google Scholar 

  25. Esfandiari, N. M. & Blum, S. A. Homogeneous vs heterogeneous polymerization catalysis revealed by single-particle fluorescence microscopy. J. Am. Chem. Soc. 133, 18145–18147 (2011).

    CAS  PubMed  Google Scholar 

  26. Ng, J. D. et al. Single-molecule investigation of initiation dynamics of an organometallic catalyst. J. Am. Chem. Soc. 138, 3876–3883 (2016).

    CAS  PubMed  Google Scholar 

  27. Andoy, N. M. et al. Single-molecule catalysis mapping quantifies site-specific activity and uncovers radial activity gradient on single 2D nanocrystals. J. Am. Chem. Soc. 135, 1845–1852 (2013).

    CAS  PubMed  Google Scholar 

  28. Zhou, X. et al. Quantitative super-resolution imaging uncovers reactivity patterns on single nanocatalysts. Nat. Nanotechnol. 7, 237–241 (2012).

    CAS  PubMed  Google Scholar 

  29. Decan, M. R., Impellizzeri, S., Marin, M. L. & Scaiano, J. C. Copper nanoparticle heterogeneous catalytic ‘click’ cycloaddition confirmed by single-molecule spectroscopy. Nat. Commun. 5, 4612 (2014).

    CAS  PubMed  Google Scholar 

  30. Decan, M. R. & Scaiano, J. C. Study of single catalytic events at copper-in-charcoal: localization of click activity through subdiffraction observation of single catalytic events. J. Phys. Chem. Lett. 6, 4049–4053 (2015).

    CAS  PubMed  Google Scholar 

  31. Wang, B. et al. From the molecule to the mole: improving heterogeneous copper catalyzed click chemistry using single molecule spectroscopy. Chem. Commun. 53, 328–331 (2017).

    CAS  Google Scholar 

  32. Wang, B., Lanterna, A. E. & Scaiano, J. C. Click chemistry: mechanistic insights into the role of amines using single-molecule spectroscopy. ACS Catal. 7, 8487–8492 (2017).

    CAS  Google Scholar 

  33. Elhage, A., Lanterna, A. E. & Scaiano, J. C. Catalytic farming: reaction rotation extends catalyst performance. Chem. Sci. 10, 1419–1425 (2019).

    CAS  PubMed  Google Scholar 

  34. Widegren, J. A. & Finke, R. G. A review of the problem of distinguishing true homogeneous catalysis from soluble or other metal-particle heterogeneous catalysis under reducing conditions. J. Mol. Catal. A 198, 317–341 (2003).

    CAS  Google Scholar 

  35. Bayram, E. et al. Is it homogeneous or heterogeneous catalysis derived from [RhCp*Cl2]2? In operando XAFS, kinetic, and crucial kinetic poisoning evidence for subnanometer Rh4 cluster-based benzene hydrogenation catalysis. J. Am. Chem. Soc. 133, 18889–18902 (2011).

    CAS  PubMed  Google Scholar 

  36. Burés, J. A simple graphical method to determine the order in catalyst. Angew. Chem. Int. Ed. Engl. 55, 2028–2031 (2016).

    PubMed  PubMed Central  Google Scholar 

  37. Collins, G., Schmidt, M., O’Dwyer, C., Holmes, J. D. & McGlacken, G. P. The origin of shape sensitivity in palladium-catalyzed Suzuki–Miyaura cross coupling reactions. Angew. Chem. Int. Ed. Engl. 53, 4142–4145 (2014).

    CAS  PubMed  Google Scholar 

  38. Del Zotto, A. & Zuccaccia, D. Metallic palladium, PdO, and palladium supported on metal oxides for the Suzuki–Miyaura cross-coupling reaction: a unified view of the process of formation of the catalytically active species in solution. Catal. Sci. 7, 3934–3951 (2017).

    Google Scholar 

  39. Amoroso, F., Colussi, S., Del Zotto, A., Llorca, J. & Trovarelli, A. An efficient and reusable catalyst based on Pd/CeO2 for the room temperature aerobic Suzuki–Miyaura reaction in water/ethanol. J. Mol. Catal. A 315, 197–204 (2010).

    CAS  Google Scholar 

  40. Carter, A. R. et al. Stabilization of an optical microscope to 0.1 nm in three dimensions. Appl. Opt. 46, 421–427 (2007).

    PubMed  Google Scholar 

  41. Bloeß, A. et al. Optical far-field microscopy of single molecules with 3.4 nm lateral resolution. J. Microsc. 205, 76–85 (2002).

    PubMed  Google Scholar 

  42. Johnson, D. S., Toledo-Crow, R., Mattheyses, AlexaL. & Simon, SanfordM. Polarization-controlled TIRFM with focal drift and spatial field intensity correction. Biophys. J. 106, 1008–1019 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Zhang, H., Kwong, F. Y., Tian, Y. & Chan, K. S. Base and cation effects on the Suzuki cross-coupling of bulky arylboronic acid with halopyridines: synthesis of pyridylphenols. J. Org. Chem. 63, 6886–6890 (1998).

    CAS  PubMed  Google Scholar 

  44. Braga, A. A. C., Morgon, N. H., Ujaque, G. & Maseras, F. Computational characterization of the role of the base in the Suzuki−Miyaura cross-coupling reaction. J. Am. Chem. Soc. 127, 9298–9307 (2005).

    CAS  PubMed  Google Scholar 

  45. Lennox, A. J. J. & Lloyd-Jones, G. C. Transmetalation in the Suzuki–Miyaura coupling: the fork in the trail. Angew. Chem. Int. Ed. Engl. 52, 7362–7370 (2013).

    CAS  PubMed  Google Scholar 

  46. Miyaura, N. Cross-coupling reaction of organoboron compounds via base-assisted transmetalation to palladium(ii) complexes. J. Organomet. Chem. 653, 54–57 (2002).

    CAS  Google Scholar 

  47. Thomas, A. A. & Denmark, S. E. Pre-transmetalation intermediates in the Suzuki–Miyaura reaction revealed: the missing link. Science 352, 329–332 (2016).

    CAS  PubMed  Google Scholar 

  48. Thomas, A. A., Zahrt, A. F., Delaney, C. P. & Denmark, S. E. Elucidating the role of the boronic esters in the Suzuki–Miyaura reaction: structural, kinetic, and computational investigations. J. Am. Chem. Soc. 140, 4401–4416 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Thomas, A. A., Wang, H., Zahrt, A. F. & Denmark, S. E. Structural, kinetic, and computational characterization of the elusive arylpalladium(ii) boronate complexes in the Suzuki–Miyaura reaction. J. Am. Chem. Soc. 139, 3805–3821 (2017).

    CAS  PubMed  Google Scholar 

  50. Biffis, A., Centomo, P., Del Zotto, A. & Zecca, M. Pd metal catalysts for cross-couplings and related reactions in the 21st century: a critical review. Chem. Rev. 118, 2249–2295 (2018).

    CAS  PubMed  Google Scholar 

  51. Lipshutz, B. H., Tasler, S., Chrisman, W., Spliethoff, B. & Tesche, B. On the nature of the ‘heterogeneous’ catalyst: nickel-on-charcoal. J. Org. Chem. 68, 1177–1189 (2003).

    CAS  PubMed  Google Scholar 

  52. Elhage, A., Lanterna, A. E. & Scaiano, J. C. Tunable photocatalytic activity of palladium-decorated TiO2: non-hydrogen-mediated hydrogenation or isomerization of benzyl-substituted alkenes. ACS Catal. 7, 250–255 (2017).

    CAS  Google Scholar 

  53. Deschout, H. et al. Precisely and accurately localizing single emitters in fluorescence microscopy. Nat. Methods 11, 253–266 (2014).

    CAS  PubMed  Google Scholar 

  54. Karolin, J., Johansson, L. B. A., Strandberg, L. & Ny, T. Fluorescence and absorption spectroscopic properties of dipyrrometheneboron difluoride (BODIPY) derivatives in liquids, lipid membranes, and proteins. J. Am. Chem. Soc. 116, 7801–7806 (1994).

    CAS  Google Scholar 

  55. Wittmershaus, B. P., Skibicki, J. J., McLafferty, J. B., Zhang, Y.-Z. & Swan, S. Spectral properties of single BODIPY dyes in polystyrene microspheres and in solutions. J. Fluoresc. 11, 119–128 (2001).

    CAS  Google Scholar 

  56. Magde, D., Rojas, G. E. & Seybold, P. G. Solvent dependence of the fluorescence lifetimes of xanthene dyes. Photochem. Photobiol. 70, 737–744 (1999).

    CAS  Google Scholar 

  57. Kubin, R. F. & Fletcher, A. N. Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 27, 455–462 (1982).

    Google Scholar 

  58. Cser, A., Nagy, K. & Biczók, L. Fluorescence lifetime of Nile red as a probe for the hydrogen bonding strength with its microenvironment. Chem. Phys. Lett. 360, 473–478 (2002).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation, the Canada Research Chairs Program and the German National Academy of Sciences Leopoldina (grant no. LPDS 2017-15 to P.C.).

Author information

Authors and Affiliations

Authors

Contributions

P.C., D.S. and J.C.S. conceived the research. P.C. and D.S. performed the experiments and analysed the data. P.C. and D.S. performed the syntheses. All authors contributed to the manuscript preparation.

Corresponding author

Correspondence to Juan C. Scaiano.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–46, Tables 1 and 2, Notes 1–4 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Costa, P., Sandrin, D. & Scaiano, J.C. Real-time fluorescence imaging of a heterogeneously catalysed Suzuki–Miyaura reaction. Nat Catal 3, 427–437 (2020). https://doi.org/10.1038/s41929-020-0442-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0442-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing