Overall photocatalytic water splitting by an organolead iodide crystalline material


Organolead halide perovskites, primarily regarded as a high-performance semiconducting component in photovoltaics, have excellent optical and charge-transport characteristics that are advantageous for photocatalysis. However, their moisture-sensitive nature largely hinders their application to water splitting. Here we report a semiconductive organolead iodide layered crystalline material ([Pb8I8(H2O)3]8+[O2C(CH2)4CO2]4) with a bandgap of ~2.74 eV that demonstrates a high robustness over a wide pH range as well as under aqueous boiling conditions. The Earth-abundant material maintains excellent optical characteristics similar to those of perovskites, and includes suitable band positions, excellent carrier diffusion lengths (up to 1.4 μm) and long carrier lifetimes (up to 1.2 μs). When illuminated by sunlight and combined with trace amounts of a Rh co-catalyst, the hybrid iodoplumbate steadily and efficiently produces stoichiometric amounts of hydrogen and oxygen in a recyclable manner. Our findings extend the excellent optoelectronic properties of organolead halide materials from photovoltaics to photocatalytic water splitting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: X-ray crystallographic views of TJU-16.
Fig. 2: Stability analysis of TJU-16.
Fig. 3: Photophysical properties of TJU-16.
Fig. 4: Overall water-splitting performance of TJU-16 and TJU-16-Rh.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. X-ray crystal structure data (CCDC no. 1983043) is available in Supplementary Data 1. The atomic coordinates of the DFT calculation data for TJU-16 and the 2D perovskite hydrolysis process are available in Supplementary Data 2 and 3, respectively.


  1. 1.

    Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    CAS  PubMed  Google Scholar 

  2. 2.

    Zou, Z., Ye, J., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).

    CAS  PubMed  Google Scholar 

  3. 3.

    Chen, S., Takata, T. & Domen, K. Particulate photocatalysts for overall water splitting. Nat. Rev. Mater. 2, 17050 (2017).

    CAS  Google Scholar 

  4. 4.

    Hisatomi, T., Kubota, J. & Domen, K. Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem. Soc. Rev. 43, 7520–7535 (2014).

    CAS  PubMed  Google Scholar 

  5. 5.

    Liu, J. et al. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347, 970–974 (2015).

    CAS  PubMed  Google Scholar 

  6. 6.

    Osterloh, F. E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting. Chem. Soc. Rev. 42, 2294–2320 (2013).

    CAS  Article  Google Scholar 

  7. 7.

    Wang, L., Zhang, Y., Chen, L., Xu, H. & Xiong, Y. 2D polymers as emerging materials for photocatalytic overall water splitting. Adv. Mater. 30, 1801955 (2018).

    Google Scholar 

  8. 8.

    Maeda, K. & Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    CAS  Google Scholar 

  9. 9.

    Chen, S. et al. Efficient visible-light-driven Z-scheme overall water splitting using a MgTa2O6–xNy/TaON heterostructure photocatalyst for H2 evolution. Angew. Chem. Int. Ed. 54, 8498–8501 (2015).

    CAS  Google Scholar 

  10. 10.

    Wang, Z. et al. Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat. Catal. 1, 756–763 (2018).

    CAS  Google Scholar 

  11. 11.

    Zhang, G., Lan, Z. A., Lin, L., Lin, S. & Wang, X. Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem. Sci. 7, 3062–3066 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Tanaka, A., Teramura, K., Hosokawa, S., Kominami, H. & Tanaka, T. Visible light-induced water splitting in an aqueous suspension of a plasmonic Au/TiO2 photocatalyst with metal co-catalysts. Chem. Sci. 8, 2574–2580 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Iwashina, K., Iwase, A., Ng, Y. H., Amal, R. & Kudo, A. Z-schematic water splitting into H2 and O2 using metal sulfide as a hydrogen-evolving photocatalyst and reduced graphene oxide as a solid-state electron mediator. J. Am. Chem. Soc. 137, 604–607 (2015).

    CAS  PubMed  Google Scholar 

  14. 14.

    Low, J., Dai, B., Tong, T., Jiang, C. & Yu, J. In situ irradiated X-ray photoelectron spectroscopy investigation on a direct Z-scheme TiO2/CdS composite film photocatalyst. Adv. Mater. 31, 1802981 (2019).

    Google Scholar 

  15. 15.

    Wei, Y., Wang, J., Yu, R., Wan, J. & Wang, D. Constructing –SrTiO3-TiO2 heterogeneous hollow multi-shelled structures for enhanced solar water splitting. Angew. Chem. Int. Ed. 58, 1422–1426 (2019).

    CAS  Google Scholar 

  16. 16.

    Mohamed, N. A. et al. Efficient photoelectrochemical performance of γ irradiated g-C3N4 and its g-C3N4@BiVO4 heterojunction for solar water splitting. J. Phys. Chem. C 123, 9013–9026 (2019).

    CAS  Google Scholar 

  17. 17.

    Nasir, S. N. F. M. et al. New insights into Se/BiVO4 heterostructure for photoelectrochemical water splitting: a combined experimental and DFT study. J. Phys. Chem. C 121, 6218–6228 (2017).

    CAS  Google Scholar 

  18. 18.

    Safaei, J. et al. Enhanced photoelectrochemical performance of Z-scheme g-C3N4/BiVO4 photocatalyst. Appl. Catal. B 234, 296–310 (2018).

    CAS  Google Scholar 

  19. 19.

    Ullah, H. Inter-molecular interaction in polypyrrole/TiO2: a DFT study. J. Alloy. Compd. 692, 140–148 (2017).

    CAS  Google Scholar 

  20. 20.

    Ullah, H., Tahir, A. A., Bibi, S., Mallick, T. K. & Karazhanov, S. Z. Electronic properties of β-TaON and its surfaces for solar water splitting. Appl. Catal. B 229, 24–31 (2018).

    CAS  Google Scholar 

  21. 21.

    Ullah, H., Tahir, A. A. & Mallick, T. K. Polypyrrole/TiO2 composites for the application of photocatalysis. Sensors Actuators B 241, 1161–1169 (2017).

    CAS  Google Scholar 

  22. 22.

    Ullah, H., Tahir, A. A. & Mallick, T. K. Structural and electronic properties of oxygen defective and Se-doped p-type BiVO4(001) thin film for the applications of photocatalysis. Appl. Catal. B 224, 895–903 (2018).

    CAS  Google Scholar 

  23. 23.

    Low, J., Yu, J., Jaroniec, M., Wageh, S. & Al-Ghamdi, A. A. Heterojunction photocatalysts. Adv. Mater. 29, 1601694 (2017).

    Google Scholar 

  24. 24.

    Xiao, J. D. & Jiang, H. L. Metal–organic frameworks for photocatalysis and photothermal catalysis. Acc. Chem. Res. 52, 356–366 (2019).

    CAS  PubMed  Google Scholar 

  25. 25.

    McMeekin, D. P. et al. A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351, 151–155 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Google Scholar 

  27. 27.

    Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).

    Google Scholar 

  28. 28.

    Shi, D. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 347, 519–522 (2015).

    CAS  PubMed  Google Scholar 

  29. 29.

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    Christians, J. A., Miranda Herrera, P. A. & Kamat, P. V. Transformation of the excited state and photovoltaic efficiency of CH3NH3PbI3 perovskite upon controlled exposure to humidified air. J. Am. Chem. Soc. 137, 1530–1538 (2015).

    CAS  PubMed  Google Scholar 

  31. 31.

    Park, S. et al. Photocatalytic hydrogen generation from hydriodic acid using methylammonium lead iodide in dynamic equilibrium with aqueous solution. Nat. Energy 2, 16185 (2017).

    CAS  Google Scholar 

  32. 32.

    Mosconi, E., Azpiroz, J. M. & De Angelis, F. Ab initio molecular dynamics simulations of methylammonium lead iodide perovskite degradation by water. Chem. Mater. 27, 4885–4892 (2015).

    CAS  Google Scholar 

  33. 33.

    Wu, Y. et al. Composite of CH3NH3PbI3 with reduced graphene oxide as a highly efficient and stable visible-light photocatalyst for hydrogen evolution in aqueous HI solution. Adv. Mater. 30, 1704342 (2018).

    Google Scholar 

  34. 34.

    Wang, X. et al. Dynamic interaction between methylammonium lead iodide and TiO2 nanocrystals leads to enhanced photocatalytic H2 evolution from HI splitting. ACS Energy Lett. 3, 1159–1164 (2018).

    CAS  Google Scholar 

  35. 35.

    Wang, H., Fang, C., Luo, H. & Li, D. Recent progress of the optoelectronic properties of 2D Ruddlesden–Popper perovskites. J. Semicond. 40, 041901 (2019).

    CAS  Google Scholar 

  36. 36.

    Spanopoulos, I. et al. Uniaxial expansion of the 2D Ruddlesden–Popper perovskite family for improved environmental stability. J. Am. Chem. Soc. 141, 5518–5534 (2019).

    CAS  PubMed  Google Scholar 

  37. 37.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zhuang, Z. et al. Intrinsic broadband white-light emission from ultrastable, cationic lead halide layered materials. Angew. Chem. Int. Ed. 56, 14411–14416 (2017).

    CAS  Google Scholar 

  39. 39.

    Yin, J., Yang, H. & Fei, H. Robust, cationic lead halide layered materials with efficient broadband white-light emission. Chem. Mater. 31, 3909–3916 (2019).

    CAS  Google Scholar 

  40. 40.

    Cheetham, A. K., Rao, C. N. R. & Feller, R. K. Structural diversity and chemical trends in hybrid inorganic–organic framework materials. Chem. Commun. 46, 4780–4795 (2006).

    Google Scholar 

  41. 41.

    Cao, S., Low, J., Yu, J. & Jaroniec, M. Polymeric photocatalysts based on graphitic carbon nitride. Adv. Mater. 27, 2150–2176 (2015).

    CAS  PubMed  Google Scholar 

  42. 42.

    Liu, G. et al. Unique electronic structure induced high photoreactivity of sulfur-doped graphitic C3N4. J. Am. Chem. Soc. 132, 11642–11648 (2010).

    CAS  PubMed  Google Scholar 

  43. 43.

    Zheng, Y., Lin, L., Wang, B. & Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 54, 12868–12884 (2015).

    CAS  Google Scholar 

  44. 44.

    Chun, W. J. et al. Conduction and valence band positions of Ta2O5, TaON, and Ta3N5 by UPS and electrochemical methods. J. Phys. Chem. B 107, 1798–1803 (2003).

    CAS  Google Scholar 

  45. 45.

    Kudo, A., Omori, K. & Kato, H. A novel aqueous process for preparation of crystal form-controlled and highly crystalline BiVO4 powder from layered vanadates at room temperature and its photocatalytic and photophysical properties. J. Am. Chem. Soc. 121, 11459–11467 (1999).

    CAS  Google Scholar 

  46. 46.

    Hong, S. J., Lee, S., Jang, J. S. & Lee, J. S. Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ. Sci. 4, 1781–1787 (2011).

    CAS  Google Scholar 

  47. 47.

    Walsh, A., Payne, D. J., Egdell, R. G. & Watson, G. W. Stereochemistry of post-transition metal oxides: revision of the classical lone pair model. Chem. Soc. Rev. 40, 4455–4463 (2011).

    CAS  PubMed  Google Scholar 

  48. 48.

    Wang, H., Wong, K. S., Foreman, B. A., Yang, Z. Y. & Wong, G. K. L. One- and two-photon-excited time-resolved photoluminescence investigations of bulk and surface recombination dynamics in ZnSe. J. Appl. Phys. 83, 4773–4776 (1998).

    CAS  Google Scholar 

  49. 49.

    Kim, M., Cahill, J. F., Su, Y., Prather, K. A. & Cohen, S. M. Postsynthetic ligand exchange as a route to functionalization of ‘inert’ metal–organic frameworks. Chem. Sci. 3, 126–130 (2012).

    CAS  Google Scholar 

  50. 50.

    Mu, L. et al. Enhancing charge separation on high symmetry SrTiO3 exposed with anisotropic facets for photocatalytic water splitting. Energy Environ. Sci. 9, 2463–2469 (2016).

    CAS  Google Scholar 

  51. 51.

    Pan, C. et al. A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew. Chem. Int. Ed. 54, 2955–2959 (2015).

    CAS  Google Scholar 

  52. 52.

    Maeda, K. et al. Preparation of core–shell-structured nanoparticles (with a noble-metal or metal oxide core and a chromia shell) and their application in water splitting by means of visible light. Chem. Eur. J. 16, 7750–7759 (2010).

    CAS  PubMed  Google Scholar 

  53. 53.

    APEX-II 2.1.4 (Bruker-AXS, 2007).

  54. 54.

    SHELXTL, Crystal Structure Determination Package (Bruker-AXS, 1999).

  55. 55.

    Brandenburg, K. & Putz, H. Diamond (Crystal Impact, 2007).

  56. 56.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Google Scholar 

  57. 57.

    Kresse, G. & Hafner, J. Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements. J. Phys. Condes. Matter 6, 8245–8257 (1994).

    CAS  Google Scholar 

  58. 58.

    Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron–gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Google Scholar 

  59. 59.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    PubMed  Google Scholar 

  60. 60.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  PubMed  Google Scholar 

  61. 61.

    Wang, H. F. & Liu, Z. P. Comprehensive mechanism and structure-sensitivity of ethanol oxidation on platinum: new transition-state searching method for resolving the complex reaction network. J. Am. Chem. Soc. 130, 10996–11004 (2008).

    CAS  PubMed  Google Scholar 

  62. 62.

    Shang, C. & Liu, Z. P. Constrained Broyden minimization combined with the dimer method for locating transition state of complex reactions. J. Chem. Theory Comput. 6, 1136–1144 (2010).

    CAS  Google Scholar 

  63. 63.

    Zhang, X. J., Shang, C. & Liu, Z. P. Double-ended surface walking method for pathway building and transition state location of complex reactions. J. Chem. Theory Comput. 9, 5745–5753 (2013).

    CAS  PubMed  Google Scholar 

Download references


This work was supported by grants from the National Natural Science Foundation of China (21971197, 51772217 and 21603165), the Shanghai Rising-Star Program (no. 20QA1409500), the Recruitment of Global Youth Experts by China, the Fundamental Research Funds for the Central Universities and the Science & Technology Commission of Shanghai Municipality (14DZ2261100 and 19DZ2271500).

Author information




X.S. and H.F. conceived the project design. X.S. synthesized TJU-16 and conducted the overall water-splitting reactions. X.S., C.P., J.Y., Y.J. and X.Z. carried out the characterization of TJU-16. G.W. and J.S. performed the theoretical calculations. H.F. supervised the research. X.S., G.W. and H.F. wrote and revised the paper. All the authors commented on the paper.

Corresponding author

Correspondence to Honghan Fei.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Catalysis thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26, Tables 1–6 and references.

Supplementary Data 1

Crystallographic Data of TJU-16.

Supplementary Data 2

Atomic coordinates of TJU-16 (IS, TS and FS) in DFT calculations.

Supplementary Data 3

Atomic coordinates of 2D perovskites (IS, TS and FS) in DFT calculations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, X., Wei, G., Sun, J. et al. Overall photocatalytic water splitting by an organolead iodide crystalline material. Nat Catal 3, 1027–1033 (2020). https://doi.org/10.1038/s41929-020-00543-4

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing