Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces

Abstract

Electrochemical conversion of CO2 into liquid fuels, powered by renewable electricity, offers one means to address the need for the storage of intermittent renewable energy. Here we present a cooperative catalyst design of molecule–metal catalyst interfaces with the goal of producing a reaction-intermediate-rich local environment, which improves the electrosynthesis of ethanol from CO2 and H2O. We implement the strategy by functionalizing the copper surface with a family of porphyrin-based metallic complexes that catalyse CO2 to CO. Using density functional theory calculations, and in situ Raman and operando X-ray absorption spectroscopies, we find that the high concentration of local CO facilitates carbon–carbon coupling and steers the reaction pathway towards ethanol. We report a CO2-to-ethanol Faradaic efficiency of 41% and a partial current density of 124 mA cm−2 at −0.82 V versus the reversible hydrogen electrode. We integrate the catalyst into a membrane electrode assembly-based system and achieve an overall energy efficiency of 13%.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: DFT calculations.
Fig. 2: Cooperative strategy for CO2-to-ethanol conversion.
Fig. 3: CO2-to-ethanol conversion performance.
Fig. 4: Mechanistic investigations of the FeTPP[Cl]/Cu catalyst for CO2-to-ethanol conversion.

Data availability

The datasets generated during, and/or analysed during, the present study, are available from the corresponding author on reasonable request.

References

  1. 1.

    Ross, M. B. et al. Designing materials for electrochemical carbon dioxide recycling. Nat. Catal. 2, 648–658 (2019).

  2. 2.

    Birdja, Y. Y. et al. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 4, 732–745 (2019).

  3. 3.

    Shih, C. F., Zhang, T., Li, J. & Bai, C. Powering the future with liquid sunshine. Joule 2, 1925–1949 (2018).

  4. 4.

    Spurgeon, J. & Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 11, 1536–1551 (2018).

  5. 5.

    Hori, Y. in Modern Aspects of Electrochemistry Vol. 42 (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).

  6. 6.

    Gao, D., Arán-Ais, R. M., Jeon, H. S. & Roldan Cuenya, B. Rational catalyst and electrolyte design for CO2 electroreduction towards multicarbon products. Nat. Catal. 2, 198–210 (2019).

  7. 7.

    Kortlever, R., Shen, J., Schouten, K. J., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

  8. 8.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

  9. 9.

    Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

  10. 10.

    Dinh, C.-T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

  11. 11.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

  12. 12.

    Clark, E. L., Hahn, C., Jaramillo, T. F. & Bell, A. T. Electrochemical CO2 reduction over compressively strained CuAg surface alloys with enhanced multi-carbon oxygenate selectivity. J. Am. Chem. Soc. 139, 15848–15857 (2017).

  13. 13.

    Hoang, T. T. H. et al. Nano porous copper-silver alloys by additive-controlled electro-deposition for the selective electroreduction of CO2 to ethylene and ethanol. J. Am. Chem. Soc. 140, 5791–5797 (2018).

  14. 14.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

  15. 15.

    Zhuang, T.-T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

  16. 16.

    Jouny, M., Luc, W. W. & Jiao, F. General techno-economic analysis of CO2 electrolysis systems. Ind. Eng. Chem. Res. 57, 2165–2177 (2018).

  17. 17.

    Zhou, Y. et al. Dopant-induced electron localization drives CO2 reduction to C2 hydrocarbons. Nat. Chem. 10, 974–980 (2018).

  18. 18.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

  19. 19.

    Liang, Z.-Q. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 9, 3828 (2018).

  20. 20.

    Ren, D., Ang, B. S.-H. & Yeo, B. S. Tuning the selectivity of carbon dioxide electroreduction toward ethanol on oxide-derived CuxZn catalysts. ACS Catal. 6, 8239–8247 (2016).

  21. 21.

    Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140–143 (2015).

  22. 22.

    Peterson, A. A. & Nørskov, J. K. Activity descriptors for CO2 electroreduction to methane on transition-metal catalysts. J. Phys. Chem. Lett. 3, 251–258 (2012).

  23. 23.

    Calle-Vallejo, F. & Koper, M. T. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

  24. 24.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

  25. 25.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

  26. 26.

    Lee, S., Park, G. & Lee, J. Importance of Ag–Cu biphasic boundaries for selective electrochemical reduction of CO2 to ethanol. ACS Catal. 7, 8594–8604 (2017).

  27. 27.

    Morales-Guio, C. G. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 1, 764–771 (2018).

  28. 28.

    Ma, S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2017).

  29. 29.

    Kim, D., Resasco, J., Yu, Y., Asiri, A. M. & Yang, P. Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold-copper bimetallic nanoparticles. Nat. Commun. 5, 4948 (2014).

  30. 30.

    Liu, X. et al. pH effects on the electrochemical reduction of CO(2) towards C2 products on stepped copper. Nat. Commun. 10, 32 (2019).

  31. 31.

    Liu, X. et al. Understanding trends in electrochemical carbon dioxide reduction rates. Nat. Commun. 8, 15438 (2017).

  32. 32.

    Lausche, A. C. et al. On the effect of coverage-dependent adsorbate–adsorbate interactions for CO methanation on transition metal surfaces. J. Catal. 307, 275–282 (2013).

  33. 33.

    Cheng, T., Xiao, H. & Goddard, W. A. Full atomistic reaction mechanism with kinetics for CO reduction on Cu(100) from ab initio molecular dynamics free-energy calculations at 298 K. Proc. Natl Acad. Sci. USA 114, 1795–1800 (2017).

  34. 34.

    Costentin, C., Drouet, S., Robert, M. & Savéant, J. M. A local proton source enhances CO2 electroreduction to CO by a molecular Fe catalyst. Science 338, 90–94 (2012).

  35. 35.

    Costentin, C., Robert, M. & Savéant, J. M. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42, 2423–2436 (2013).

  36. 36.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

  37. 37.

    Hu, X. M., Rønne, M. H., Pedersen, S. U., Skrydstrup, T. & Daasbjerg, K. Enhanced catalytic activity of cobalt porphyrin in CO2 electroreduction upon immobilization on carbon materials. Angew. Chem. Int. Ed. 56, 6468–6472 (2017).

  38. 38.

    Zhang, X. et al. Highly selective and active CO2 reduction electrocatalysts based on cobalt phthalocyanine/carbon nanotube hybrid structures. Nat. Commun. 8, 14675 (2017).

  39. 39.

    Smith, P. T. et al. Iron porphyrins embedded into a supramolecular porous organic cage for electrochemical CO2 reduction in water. Angew. Chem. Int. Ed. 57, 9684–9688 (2018).

  40. 40.

    Joya, K. S., Morlanés, N., Maloney, E., Rodionov, V. & Takanabe, K. Immobilization of a molecular cobalt electrocatalyst by hydrophobic interaction with a hematite photoanode for highly stable oxygen evolution. Chem. Commun. 51, 13481–13484 (2015).

  41. 41.

    Bertheussen, E. et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016).

  42. 42.

    Weekes, D. M., Salvatore, D. A., Reyes, A., Huang, A. & Berlinguette, C. P. Electrolytic CO2 reduction in a flow cell. Acc. Chem. Res. 51, 910–918 (2018).

  43. 43.

    Sheppard, N. & Nguyen, T. T. Advances in Infrared and Raman Spectroscopy. (Heyden, 1978).

  44. 44.

    Gunathunge, C. M. et al. Spectroscopic observation of reversible surface reconstruction of copper electrodes under CO2 reduction. J. Phys. Chem. C. 121, 12337–12344 (2017).

  45. 45.

    Tsubaki, M., Srivastava, R. B. & Yu, N. T. Resonance Raman investigation of carbon monoxide bonding in (carbon monoxy)hemoglobin and -myoglobin: detection of iron–carbon monoxide stretching and iron–carbon–oxygen bending vibrations and influence of the quaternary structure change. Biochem. 21, 1132–1140 (1982).

  46. 46.

    Kerr, E. A., Mackin, H. C. & Yu, N. T. Resonance Raman studies of carbon monoxide binding to iron “picket fence” porphyrin with unhindered and hindered axial bases. An inverse relationship between binding affinity and the strength of iron–carbon bond. Biochem. 22, 4373–4379 (1983).

  47. 47.

    Uno, T. et al. The resonance Raman frequencies of the Fe–CO stretching and bending modes in the CO complex of cytochrome P-450cam. J. Bio. Chem. 260, 2023–2026 (1985).

  48. 48.

    Costentin, C., Drouet, S., Passard, G., Robert, M. & Savéant, J. M. Proton-coupled electron transfer cleavage of heavy-atom bonds in electrocatalytic processes. Cleavage of a C–O bond in the catalyzed electrochemical reduction of CO2. J. Am. Chem. Soc. 135, 9023–9031 (2013).

  49. 49.

    Costentin, C., Passard, G., Robert, M. & Savéant, J. M. Ultraefficient homogeneous catalyst for the CO2-to-CO electrochemical conversion. Proc. Natl Acad. Sci. USA 111, 14990–14994 (2014).

  50. 50.

    Yang, H. B. et al. Atomically dispersed Ni(i) as the active site for electrochemical CO2 reduction. Nat. Energy 3, 140–147 (2018).

  51. 51.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

  52. 52.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  53. 53.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

  54. 54.

    Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

  55. 55.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  56. 56.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

  57. 57.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

  58. 58.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

  59. 59.

    Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

  60. 60.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

Download references

Acknowledgements

The authors acknowledge funding support from Suncor Energy, the Ontario Research fund and the Natural Sciences and Engineering Research Council (NSERC). DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Niagara supercomputer at the SciNet HPC Consortium and the Southern Ontario Smart Computing Innovation Platform (SOSCIP). SciNet is funded by the Canada Foundation for Innovation, the Government of Ontario’s Ontario Research Fund – Research Excellence, and the University of Toronto. SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. This research used synchrotron resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy Office of Science by Argonne National Laboratory and was supported by the US Department of Energy under contract no. DE-AC02-06CH11357 and the Canadian Light Source and its funding partners. F.L. thanks H.T.L. for ICP–MS measurement. J.L. acknowledges the Banting Postdoctoral Fellowships programme. C.G. acknowledges the NSERC Postdoctoral Fellowships programme. D.S. acknowledges the NSERC E.W.R. Steacie Memorial Fellowship.

Author information

E.H.S. supervised the project. F.L. conceived the idea and carried out the experiments. F.L. and E.H.S. wrote the paper. Y.C.L. and Z.W. carried out the DFT calculations. D.H.N. and Y. Lum performed the XAS measurements. D.H.N., J.L. and S-F.H. helped to analyse the XAS data. Y. Li and A.O. carried out part of electrochemical experiments. M.L. and X.W. provided help in NMR analysis. B.C., Y.H.W., J.W., Y.X., C.-T.D., Y.W. and T.-T.Z. helped to characterize the materials. Y.C.L. and C.M.G. helped in the Raman measurements. D.S. assisted in data analysis and manuscript writing. All authors discussed the results and assisted during manuscript preparation.

Correspondence to Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27, Table 1, Notes 1–3 and references.

Supplementary Data 1

Atomic coordinates of the optimized computational models.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, F., Li, Y.C., Wang, Z. et al. Cooperative CO2-to-ethanol conversion via enriched intermediates at molecule–metal catalyst interfaces. Nat Catal 3, 75–82 (2020). https://doi.org/10.1038/s41929-019-0383-7

Download citation