Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Towards dense single-atom catalysts for future automotive applications

Abstract

CO oxidation is an important primary reaction in automotive catalysis, and has been studied extensively since the 1970s because of its fundamental nature and technological relevance to emission control regulations. In this Review, we investigate the development of state-of-the-art catalysts for CO oxidation and consider the important achievements in the design of good catalysts via a detailed scrutiny of CO oxidation pathways for single-atom and few-atom cluster catalysis, which constitute a subset of the emerging technology of atomically dispersed and nanostructured oxide-supported catalysts. We see a recent effort towards achieving high-performance catalysts via chemical potential tuning, in which the size, structure, shape and degree of alloys are controlled to alter the electronic structure, catalyst-oxide support interactions and resulting interactions between adsorbates and the catalyst. We present a missing link in modern catalysis research in terms of the future development of automotive catalysts and related issues that must be satisfactorily resolved for sustainable and environment-friendly solutions.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Necessity of the development of low-cost, environment-friendly automotive catalysts.
Fig. 2: Structural analyses of atomically dispersed and nanostructured catalysts.

Ref. 39, Elsevier (ac); ref. 25, Springer Nature Ltd. (df); ref. 40, AAAS (g); ref. 59, Wiley (h)

Fig. 3: CO oxidation paths and elementary steps of single-atom catalysts.
Fig. 4: Size-sensitive CO oxidation for Au on TiO2.

Ref. 65, Springer Nature Ltd (a); ref. 19, AAAS (b); ref. 66, Springer Nature Ltd (c)

Fig. 5: CO oxidation activity of Pt, Pd, Rh and Au catalysts.
Fig. 6: Size dependency of metal d-state and energy potential diagrams for CO oxidation.

Ref. 86, Wiley (b); ref. 90, RSC (e); ref. 92, American Chemical Society (f)

References

  1. Gandhi, H. S., Graham, G. W. & McCabe, R. W. Automotive exhaust catalysis. J. Catal. 216, 433–442 (2003).

    CAS  Google Scholar 

  2. Kašpar, J., Fornasiero, P. & Hickey, N. Automotive catalytic converters: current status and some perspectives. Catal. Today 77, 419–449 (2003).

    Google Scholar 

  3. Miyoshi, N. et al. Development of new concept three-way catalyst for automotive lean-burn engines. SAE Trans. 104, 1361–1370 (1995).

    Google Scholar 

  4. Langmuir, I. The mechanism of the catalytic action of platinum in the reactions 2CO + O2= 2CO2 and 2H2+ O2= 2H2O. Trans. Faraday Soc. 17, 621–654 (1922).

    Google Scholar 

  5. Beniya, A., Ikuta, Y., Isomura, N., Hirata, H. & Watanabe, Y. Synergistic promotion of NO–CO reaction cycle by gold and nickel elucidated using a well-defined model bimetallic catalyst surface. ACS Catal. 7, 1369–1377 (2017).

    CAS  Google Scholar 

  6. 2017 Outlook for Energy: A View to 2040 (Exxon Mobil Corporation, 2017).

  7. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  8. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    CAS  Google Scholar 

  9. Higashi, S., Lee, S. W., Lee, J. S., Takechi, K. & Cui, Y. Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration. Nat. Commun. 7, 11801 (2016).

    PubMed  PubMed Central  Google Scholar 

  10. Zammit, M. et al. Future Automotive Aftertreatment Solutions: The 150°C Challenge Workshop Report (US Department of Energy, 2013). Describes the 150 °C challenge in the United States.

  11. Golunski, S. E. Why use platinum in catalytic converters? Platin. Met. Rev. 51, 162–162 (2007).

    CAS  Google Scholar 

  12. Heiz, U. & Landman, U. Nanocatalysis (Springer-Verlag, Berlin, 2007).

  13. Heiz, U., Sanchez, A., Abbet, S. & Schneider, W. D. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: each atom counts. J. Am. Chem. Soc. 121, 3214–3217 (1999).

    CAS  Google Scholar 

  14. Vajda, S. et al. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8, 213–216 (2009).

    CAS  PubMed  Google Scholar 

  15. Kaden, W. E., Wu, T. P., Kunkel, W. A. & Anderson, S. L. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326, 826–829 (2009).

    CAS  PubMed  Google Scholar 

  16. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

    CAS  PubMed  Google Scholar 

  17. Neugebohren, J. et al. Velocity-resolved kinetics of site-specific carbon monoxide oxidation on platinum surfaces. Nature 558, 280–283 (2018).

    CAS  PubMed  Google Scholar 

  18. Wintterlin, J., Völkening, S., Janssens, T. V. W., Zambelli, T. & Ertl, G. Atomic and macroscopic reaction rates of a surface-catalyzed reaction. Science 278, 1931–1934 (1997).

    CAS  PubMed  Google Scholar 

  19. Valden, M., Lai, X. & Goodman, D. W. Onset of catalytic activity of gold clusters on titania with the appearance of nonmetallic properties. Science 281, 1647–1650 (1998).

    CAS  PubMed  Google Scholar 

  20. Salmeron, M. & Schlögl, R. Ambient pressure photoelectron spectroscopy: a new tool for surface science and nanotechnology. Surf. Sci. Rep. 63, 169–199 (2008).

    CAS  Google Scholar 

  21. Herzing, A. A., Kiely, C. J., Carley, A. F., Landon, P. & Hutchings, G. J. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321, 1331–1335 (2008).

    CAS  PubMed  Google Scholar 

  22. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    CAS  PubMed  Google Scholar 

  23. Liu, J. Catalysis by supported single metal atoms. ACS Catal. 7, 34–59 (2017).

    CAS  Google Scholar 

  24. Fu, Q., Saltsburg, H. & Flytzani-Stephanopoulos, M. Active nonmetallic Au and Pt species on ceria-based water–gas shift catalysts. Science 301, 935–938 (2003).

    CAS  PubMed  Google Scholar 

  25. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    CAS  PubMed  Google Scholar 

  26. Wang, A., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    CAS  Google Scholar 

  27. Freund, H.-J., Meijer, G., Scheffler, M., Schlögl, R. & Wolf, M. CO oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50, 10064–10094 (2011).

    CAS  Google Scholar 

  28. Boudart, M. Heterogeneous catalysis by metals. J. Mol. Catal. 30, 27–38 (1985).

    CAS  Google Scholar 

  29. Masatake, H., Tetsuhiko, K., Hiroshi, S. & Nobumasa, Y. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem. Lett. 16, 405–408 (1987).

    Google Scholar 

  30. Li, L. et al. Investigation of catalytic finite-size-effects of platinum metal clusters. J. Phys. Chem. Lett. 4, 222–226 (2013).

    CAS  PubMed  Google Scholar 

  31. Yang, C. & Garland, C. W. Infrared studies of carbon monoxide chemisorbed on Rhodium. J. Phys. Chem. 61, 1504–1512 (1957).

    Google Scholar 

  32. Yates, J. T., Duncan, T. M., Worley, S. D. & Vaughan, R. W. Infrared spectra of chemisorbed CO on Rh. J. Chem. Phys. 70, 1219–1224 (1979).

    CAS  Google Scholar 

  33. Rice, C. A., Worley, S. D., Curtis, C. W., Guin, J. A. & Tarrer, A. R. The oxidation state of dispersed Rh on Al2O3. J. Chem. Phys. 74, 6487–6497 (1981).

    CAS  Google Scholar 

  34. Wovchko, E. A. & Yates, J. T. Activation of O2 on a photochemically generated RhI site on an Al2O3 surface: low-temperature O2 dissociation and CO oxidation. J. Am. Chem. Soc. 120, 10523–10527 (1998).

    CAS  Google Scholar 

  35. Asakura, K., Nagahiro, H., Ichikuni, N. & Iwasawa, Y. Structure and catalytic combustion activity of atomically dispersed Pt species at MgO surface. Appl. Catal. A. 188, 313–324 (1999).

    CAS  Google Scholar 

  36. Abbet, S. et al. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): one atom is enough! J. Am. Chem. Soc. 122, 3453–3457 (2000).

    CAS  Google Scholar 

  37. Zhang, X., Shi, H. & Xu, B.-Q. Catalysis by gold: isolated surface Au3+ ions are active sites for selective hydrogenation of 1,3-butadiene over Au/ZrO2 catalysts. Angew. Chem. Int. Ed. 44, 7132–7135 (2005).

    CAS  Google Scholar 

  38. Hackett, S. F. J. et al. High-activity, single-site mesoporous Pd/Al2O3 catalysts for selective aerobic oxidation of allylic alcohols. Angew. Chem. Int. Ed. 46, 8593–8596 (2007).

    CAS  Google Scholar 

  39. Nagai, Y. et al. Sintering inhibition mechanism of platinum supported on ceria-based oxide and Pt-oxide–support interaction. J. Catal. 242, 103–109 (2006).

    CAS  Google Scholar 

  40. Farmer, J. A. & Campbell, C. T. Ceria maintains smaller metal catalyst particles by strong metal-support bonding. Science 329, 933–936 (2010).

    CAS  PubMed  Google Scholar 

  41. Bruix, A. et al. Maximum noble-metal efficiency in catalytic materials: atomically dispersed surface platinum. Angew. Chem. Int. Ed. 53, 10525–10530 (2014).

    CAS  Google Scholar 

  42. Wang, C. et al. Water-mediated Mars–Van Krevelen mechanism for CO oxidation on ceria-supported single-atom Pt1 catalyst. ACS Catal. 7, 887–891 (2017).

    CAS  Google Scholar 

  43. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    CAS  PubMed  Google Scholar 

  44. Nie, L. et al. Activation of surface lattice oxygen in single-atom Pt/CeO2 for low-temperature CO oxidation. Science 358, 1419–1423 (2017).

    CAS  PubMed  Google Scholar 

  45. Chen, J. et al. Surface engineering protocol to obtain an atomically dispersed Pt/CeO2 catalyst with high activity and stability for CO oxidation. ACS Sustain. Chem. Eng. 6, 14054–14062 (2018).

    CAS  Google Scholar 

  46. DeRita, L. et al. Catalyst architecture for stable single atom dispersion enables site-specific spectroscopic and reactivity measurements of CO adsorbed to Pt atoms, oxidized Pt clusters, and metallic Pt clusters on TiO2. J. Am. Chem. Soc. 139, 14150–14165 (2017). Demonstrates a relationship between CO IR and single atom/few-atom clusters.

    CAS  PubMed  Google Scholar 

  47. Liu, S. et al. Stabilizing single-atom and small-domain platinum via combining organometallic chemisorption and atomic layer deposition. Organometallics 36, 818–828 (2017).

    CAS  Google Scholar 

  48. Moses-DeBusk, M. et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135, 12634–12645 (2013).

    CAS  PubMed  Google Scholar 

  49. Zhang, Z. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Neitzel, A. et al. Atomically dispersed Pd, Ni, and Pt species in ceria-based catalysts: principal differences in stability and reactivity. J. Phys. Chem. C. 120, 9852–9862 (2016).

    CAS  Google Scholar 

  51. Spezzati, G. et al. Atomically dispersed Pd–O species on CeO2(111) as highly active sites for low-temperature CO oxidation. ACS Catal. 7, 6887–6891 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    CAS  PubMed  Google Scholar 

  53. Qiao, B. et al. Ultrastable single-atom gold catalysts with strong covalent metal-support interaction (CMSI). Nano Res. 8, 2913–2924 (2015).

    CAS  Google Scholar 

  54. Guo, L.-W. et al. Contributions of distinct gold species to catalytic reactivity for carbon monoxide oxidation. Nat. Commun. 7, 13481 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Jeong, H. et al. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 140, 9558–9565 (2018).

    CAS  PubMed  Google Scholar 

  56. Allian, A. D. et al. Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters. J. Am. Chem. Soc. 133, 4498–4517 (2011).

    CAS  PubMed  Google Scholar 

  57. Mars, P. & van Krevelen, D. W. Oxidations carried out by means of vanadium oxide catalysts. Chem. Eng. Sci. 3, 41–59 (1954).

    CAS  Google Scholar 

  58. Wang, J., Tan, H., Yu, S. & Zhou, K. Morphological effects of gold clusters on the reactivity of ceria surface oxygen. ACS Catal. 5, 2873–2881 (2015).

    CAS  Google Scholar 

  59. Bliem, R. et al. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst. Angew. Chem. Int. Ed. 54, 13999–14002 (2015).

    CAS  Google Scholar 

  60. Daté, M. & Haruta, M. Moisture effect on CO oxidation over Au/TiO2 catalyst. J. Catal. 201, 221–224 (2001).

    Google Scholar 

  61. Saavedra, J., Doan, H. A., Pursell, C. J., Grabow, L. C. & Chandler, B. D. The critical role of water at the gold-titania interface in catalytic CO oxidation. Science 345, 1599–1602 (2014).

    CAS  PubMed  Google Scholar 

  62. Ghosh, T. K. & Nair, N. N. Rh1/γ-Al2O3 single-atom catalysis of O2 activation and CO oxidation: mechanism, effects of hydration, oxidation state, and cluster size. ChemCatChem 5, 1811–1821 (2013).

    CAS  Google Scholar 

  63. Zhou, X. et al. Stable Pt single atoms and nanoclusters on ultrathin CuO film and their performances in CO oxidation. J. Phys. Chem. C. 120, 1709–1715 (2016).

    CAS  Google Scholar 

  64. Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

    CAS  Google Scholar 

  65. Bamwenda, G. R., Tsubota, S., Nakamura, T. & Haruta, M. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO2 for CO oxidation. Catal. Lett. 44, 83–87 (1997).

    CAS  Google Scholar 

  66. Mavrikakis, M., Stoltze, P. & Nørskov, J. K. Making gold less noble. Catal. Lett. 64, 101–106 (2000).

    CAS  Google Scholar 

  67. Sanchez, A. et al. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103, 9573–9578 (1999).

    CAS  Google Scholar 

  68. Lee, S., Fan, C., Wu, T. & Anderson, S. L. CO oxidation on Aun/TiO2 catalysts produced by size-selected cluster deposition. J. Am. Chem. Soc. 126, 5682–5683 (2004).

    CAS  PubMed  Google Scholar 

  69. Watanabe, Y., Wu, X., Hirata, H. & Isomura, N. Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catal. Sci. Technol. 1, 1490–1495 (2011).

    CAS  Google Scholar 

  70. Bonanni, S., Aït-Mansour, K., Harbich, W. & Brune, H. Reaction-induced cluster ripening and initial size-dependent reaction rates for CO oxidation on Ptn/TiO2(110)-(1×1). J. Am. Chem. Soc. 136, 8702–8707 (2014).

    CAS  PubMed  Google Scholar 

  71. Lou, Y. & Liu, J. CO oxidation on metal oxide supported single Pt atoms: the role of the support. Ind. Eng. Chem. Res. 56, 6916–6925 (2017).

    CAS  Google Scholar 

  72. Li, J. et al. In situ formation of isolated bimetallic PtCe sites of single-dispersed Pt on CeO2 for low-temperature CO oxidation. ACS Appl. Mater. Interfaces 10, 38134–38140 (2018).

    CAS  PubMed  Google Scholar 

  73. Liang, J.-X. et al. Theoretical and experimental investigations on single-atom catalysis: Ir1/FeOx for CO oxidation. J. Phys. Chem. C. 118, 21945–21951 (2014).

    CAS  Google Scholar 

  74. Li, S. et al. Low-temperature CO oxidation over supported Pt catalysts prepared by colloid-deposition method. Catal. Commun. 9, 1045–1049 (2008).

    CAS  Google Scholar 

  75. Han, Y.-F., Zhong, Z., Ramesh, K., Chen, F. & Chen, L. Effects of different types of γ-Al2O3 on the activity of gold nanoparticles for CO oxidation at low-temperatures. J. Phys. Chem. C. 111, 3163–3170 (2007).

    CAS  Google Scholar 

  76. Lin, S. D., Bollinger, M. & Vannice, M. A. Low temperature CO oxidation over Au/TiO2 and Au/SiO2 catalysts. Catal. Lett. 17, 245–262 (1993).

    CAS  Google Scholar 

  77. Ayastuy, J. L., González-Marcos, M. P., Gil-Rodríguez, A., González-Velasco, J. R. & Gutiérrez-Ortiz, M. A. Selective CO oxidation over CeXZr1−XO2-supported Pt catalysts. Catal. Today 116, 391–399 (2006).

    CAS  Google Scholar 

  78. Lee, J., Ryou, Y., Kim, J., Chan, X., Kim, T. J. & Kim, D. H. Influence of the defect concentration of ceria on the Pt dispersion and the CO oxidation activity of Pt/CeO2. J. Phys. Chem. C. 122, 4972–4983 (2018).

    CAS  Google Scholar 

  79. Jia, C.-J., Liu, Y., Bongard, H. & Schüth, F. Very low temperature CO oxidation over colloidally deposited gold nanoparticles on Mg(OH)2 and MgO. J. Am. Chem. Soc. 132, 1520–1522 (2010).

    CAS  PubMed  Google Scholar 

  80. Aguilar-Guerrero, V. & Gates, B. C. Kinetics of CO oxidation catalyzed by highly dispersed CeO2-supported gold. J. Catal. 260, 351–357 (2008).

    CAS  Google Scholar 

  81. Qiao, B. et al. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin. J. Catal. 36, 1505–1511 (2015).

    CAS  Google Scholar 

  82. Kunwar, D. et al. Stabilizing high metal loadings of thermally stable platinum single atoms on an industrial catalyst support. ACS Catal. 9, 3978–3990 (2019). This study demonstrates that cerium oxide can support Pt single atoms at high metal loading (3 wt% Pt).

    CAS  Google Scholar 

  83. Campbell, C. T. & Sellers, J. R. V. Anchored metal nanoparticles: effects of support and size on their energy, sintering resistance and reactivity. Faraday Discuss. 162, 9–30 (2013).

    CAS  PubMed  Google Scholar 

  84. Yudanov, I. V., Genest, A., Schauermann, S., Freund, H.-J. & Rösch, N. Size dependence of the adsorption energy of CO on metal nanoparticles: a DFT search for the minimum value. Nano Lett. 12, 2134–2139 (2012).

    CAS  PubMed  Google Scholar 

  85. Hammer, B., Morikawa, Y. & Nørskov, J. K. CO chemisorption at metal surfaces and overlayers. Phys. Rev. Lett. 76, 2141–2144 (1996).

    CAS  PubMed  Google Scholar 

  86. Falsig, H. et al. Trends in the catalytic CO oxidation activity of nanoparticles. Angew. Chem. Int. Ed. 47, 4835–4839 (2008).

    CAS  Google Scholar 

  87. Fischer-Wolfarth, J.-H. et al. Particle-size dependent heats of adsorption of CO on supported Pd nanoparticles as measured with a single-crystal microcalorimeter. Phys. Rev. B 81, 241416 (2010).

    Google Scholar 

  88. Ruiz Puigdollers, A., Schlexer, P., Tosoni, S. & Pacchioni, G. Increasing oxide reducibility: the role of metal/oxide interfaces in the formation of oxygen vacancies. ACS Catal. 7, 6493–6513 (2017).

    CAS  Google Scholar 

  89. Su, Y.-Q., Filot, I. A. W., Liu, J.-X., Tranca, I. & Hensen, E. J. M. Charge transport over the defective CeO2(111) surface. Chem. Mater. 28, 5652–5658 (2016).

    CAS  Google Scholar 

  90. Migani, A., Vayssilov, G. N., Bromley, S. T., Illas, F. & Neyman, K. M. Dramatic reduction of the oxygen vacancy formation energy in ceria particles: a possible key to their remarkable reactivity at the nanoscale. J. Mater. Chem. 20, 10535–10546 (2010).

    CAS  Google Scholar 

  91. Tsunekawa, S., Wang, J. T. & Kawazoe, Y. Lattice constants and electron gap energies of nano- and subnano-sized cerium oxides from the experiments and first-principles calculations. J. Alloy. Compd. 408–412, 1145–1148 (2006).

    Google Scholar 

  92. Trovarelli, A. & Llorca, J. Ceria catalysts at nanoscale: how do crystal shapes shape catalysis? ACS Catal. 7, 4716–4735 (2017).

    CAS  Google Scholar 

  93. Bruix, A. & Neyman, K. M. Modelling ceria-based nanomaterials for catalysis and related applications. Catal. Lett. 146, 2053–2080 (2016).

    CAS  Google Scholar 

  94. Mavrikakis, M., Hammer, B. & Nørskov, J. K. Effect of strain on the reactivity of metal surfaces. Phys. Rev. Lett. 81, 2819–2822 (1998).

    Google Scholar 

  95. Schlapka, A., Lischka, M., Groβ, A., Käsberger, U. & Jakob, P. Surface strain versus substrate interaction in heteroepitaxial metal layers: Pt on Ru(0001). Phys. Rev. Lett. 91, 016101 (2003).

    CAS  PubMed  Google Scholar 

  96. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    CAS  PubMed  Google Scholar 

  97. De Clercq, A., Margeat, O., Sitja, G., Henry, C. R. & Giorgio, S. Core–shell Pd–Pt nanocubes for the CO oxidation. J. Catal. 336, 33–40 (2016).

    Google Scholar 

  98. Nilsson Pingel, T., Jørgensen, M., Yankovich, A. B., Grönbeck, H. & Olsson, E. Influence of atomic site-specific strain on catalytic activity of supported nanoparticles. Nat. Commun. 9, 2722 (2018).

    PubMed  PubMed Central  Google Scholar 

  99. Park, J. Y., Zhang, Y., Grass, M., Zhang, T. & Somorjai, G. A. Tuning of catalytic CO oxidation by changing composition of Rh−Pt bimetallic nanoparticles. Nano Lett. 8, 673–677 (2008).

    CAS  PubMed  Google Scholar 

  100. Jin, M. et al. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 4, 83–91 (2011).

    CAS  Google Scholar 

  101. Wang, R., He, H., Liu, L.-C., Dai, H.-X. & Zhao, Z. Shape-dependent catalytic activity of palladium nanocrystals for the oxidation of carbon monoxide. Catal. Sci. Technol. 2, 575–580 (2012).

    CAS  Google Scholar 

  102. Wang, R., He, H., Wang, J., Liu, L. & Dai, H. Shape-regulation: an effective way to control CO oxidation activity over noble metal catalysts. Catal. Today 201, 68–78 (2013).

    CAS  Google Scholar 

  103. Wilde, M. & Fukutani, K. Hydrogen detection near surfaces and shallow interfaces with resonant nuclear reaction analysis. Surf. Sci. Rep. 69, 196–295 (2014).

    CAS  Google Scholar 

  104. Wang, Y.-G. et al. CO oxidation on Au/TiO2: condition-dependent active sites and mechanistic pathways. J. Am. Chem. Soc. 138, 10467–10476 (2016).

    CAS  PubMed  Google Scholar 

  105. Nilius, N. Properties of oxide thin films and their adsorption behaviour studied by scanning tunnelling microscopy and conductance spectroscopy. Surf. Sci. Rep. 64–67, 595–659 (2009).

    Google Scholar 

  106. Sugimoto, Y. et al. Chemical identification of individual surface atoms by atomic force microscopy. Nature 446, 64 (2007). Identifies single Ge atoms substituted with Si on the Si(111) surface by analysing the AFM frequency.

    CAS  PubMed  Google Scholar 

  107. Yurtsever, A. et al. The local electronic properties of individual Pt atoms adsorbed on TiO2(110) studied by Kelvin probe force microscopy and first-principles simulations. Nanoscale 9, 5812–5821 (2017). Single Pt atoms on TiO 2 (110) are identified by this technique.

    CAS  PubMed  Google Scholar 

  108. Dai, Y. et al. Inherent size effects on XANES of nanometer metal clusters: size-selected platinum clusters on silica. J. Phys. Chem. C. 121, 361–374 (2017).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shougo Higashi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–3, Supplementary Notes 1–2 and Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Beniya, A., Higashi, S. Towards dense single-atom catalysts for future automotive applications. Nat Catal 2, 590–602 (2019). https://doi.org/10.1038/s41929-019-0282-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0282-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing