Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts

Abstract

Reducing the size of metal nanoparticles down to the single-atom level has been actively pursued to maximize the use of precious metals. Recently, single-atom catalysts, in which all the metal atoms are isolated on a support with 100% dispersion, have received much attention. However, the lack of ensemble sites prevents valuable surface reactions that require metal proximity to occur. Here, we present metal (Pt, Pd and Rh) ensemble catalysts with 100% dispersion and a reduced metallic surface state. More specifically, nanoceria particles were anchored on Al3+penta sites of activated γ-alumina, and then metal was deposited and reduced. The ensemble catalysts are highly durable: their structure was maintained even after hydrothermal ageing at 900 °C for 24 h or after long-term reaction. These catalysts have superior activity and durability for three-way catalytic reactions and can provide insights beyond single-atom catalysts for heterogeneous catalysis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Preparation of metal ensemble catalysts and the spectroscopic characterizations.
Fig. 2: Microscopic characterizations of the ESCs.
Fig. 3: Electronic properties of ESCs and SACs.
Fig. 4: Catalytic performance for the TWC reaction.
Fig. 5: Changes in the metal structures of the ESCs after durability tests.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on reasonable request.

References

  1. Wang, A. Q., Li, J. & Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2, 65–81 (2018).

    Article  CAS  Google Scholar 

  2. Yang, X. F. et al. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013).

    Article  CAS  PubMed  Google Scholar 

  3. Liu, L. C. & Corma, A. Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118, 4981–5079 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guczi, L. et al. Gold nanoparticles deposited on SiO2/Si(100): correlation between size, electron structure, and activity in CO oxidation. J. Am. Chem. Soc. 125, 4332–4337 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Haneda, M., Watanabe, T., Kamiuchi, N. & Ozawa, M. Effect of platinum dispersion on the catalytic activity of Pt/Al2O3 for the oxidation of carbon monoxide and propene. Appl. Catal. B 142, 8–14 (2013).

    Article  CAS  Google Scholar 

  6. Bonanni, S., Ait-Mansour, K., Harbich, W. & Brune, H. Reaction-induced cluster ripening and initial size-dependent reaction rates for CO oxidation on Ptn/TiO2(110)-(1x1). J. Am. Chem. Soc. 136, 8702–8707 (2014).

    Article  CAS  PubMed  Google Scholar 

  7. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  PubMed  Google Scholar 

  8. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Lin, L. L. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 544, 80–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. Zhang, Z. L. et al. Thermally stable single atom Pt/m-Al2O3 for selective hydrogenation and CO oxidation. Nat. Commun. 8, 16100 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lin, J. et al. Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction. J. Am. Chem. Soc. 135, 15314–15317 (2013).

    Article  CAS  PubMed  Google Scholar 

  12. Yan, H. et al. Single-atom Pd1/graphene catalyst achieved by atomic layer deposition: remarkable performance in selective hydrogenation of 1,3-butadiene. J. Am. Chem. Soc. 137, 10484–10487 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Kwon, Y., Kim, T. Y., Kwon, G., Yi, J. & Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 139, 17694–17699 (2017).

    Article  CAS  PubMed  Google Scholar 

  14. Peterson, E. J. et al. Low-temperature carbon monoxide oxidation catalysed by regenerable atomically dispersed palladium on alumina. Nat. Commun. 5, 4885 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Choi, C. H. et al. Tuning selectivity of electrochemical reactions by atomically dispersed platinum catalyst. Nat. Commun. 7, 10922 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim, J. et al. Highly durable platinum single-atom alloy catalyst for electrochemical reactions. Adv. Energy Mater. 8, 1701476 (2018).

    Article  CAS  Google Scholar 

  17. Yang, S., Kim, J., Tak, Y. J., Soon, A. & Lee, H. Single-atom catalyst of platinum supported on titanium nitride for selective electrochemical reactions. Angew. Chem. Int. Ed. 55, 2058–2062 (2016).

    Article  CAS  Google Scholar 

  18. Moses-DeBusk, M. et al. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135, 12634–12645 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Therrien, A. J. et al. An atomic-scale view of single-site Pt catalysis for low-temperature CO oxidation. Nat. Catal. 1, 192–198 (2018).

    Article  CAS  Google Scholar 

  20. Shan, J. J., Li, M. W., Allard, L. F., Lee, S. S. & Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 551, 605–608 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Wang, L. B. et al. Atomic-level insights in optimizing reaction paths for hydroformylation reaction over Rh/CoO single-atom catalyst. Nat. Commun. 7, 14036 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  PubMed  Google Scholar 

  23. Lucci, F. R. et al. Selective hydrogenation of 1,3-butadiene on platinum-copper alloys at the single-atom limit. Nat. Commun. 6, 8550 (2015).

    Article  PubMed  CAS  Google Scholar 

  24. Bae, J., Kim, J., Jeong, H. & Lee, H. CO oxidation on SnO2 surfaces enhanced by metal doping. Catal. Sci. Technol. 8, 782–789 (2018).

    Article  CAS  Google Scholar 

  25. Jeong, H. et al. Fully dispersed Rh ensemble catalyst to enhance low-temperature activity. J. Am. Chem. Soc. 140, 9558–9565 (2018).

    Article  CAS  PubMed  Google Scholar 

  26. Gabelnick, A. M., Capitano, A. T., Kane, S. M., Gland, J. L. & Fischer, D. A. Propylene oxidation mechanisms and intermediates using in situ soft x-ray fluorescence methods on the Pt(111) surface. J. Am. Chem. Soc. 122, 143–149 (2000).

    Article  CAS  Google Scholar 

  27. Lee, I., Delbecq, F., Morales, R., Albiter, M. A. & Zaera, F. Tuning selectivity in catalysis by controlling particle shape. Nat. Mater. 8, 132–138 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. An, K., Alayoglu, S., Musselwhite, N., Na, K. & Somorjai, G. A. Designed catalysts from Pt nanoparticles supported on macroporous oxides for selective isomerization of n-hexane. J. Am. Chem. Soc. 136, 6830–6833 (2014).

    Article  CAS  PubMed  Google Scholar 

  29. Kliewer, C. J. et al. Furan hydrogenation over Pt(111) and Pt(100) single-crystal surfaces and Pt nanoparticles from 1 to 7 nm: a kinetic and sum frequency generation vibrational spectroscopy study. J. Am. Chem. Soc. 132, 13088–13095 (2010).

    Article  CAS  PubMed  Google Scholar 

  30. An, K. & Somorjai, G. A. Size and shape control of metal nanoparticles for reaction selectivity in catalysis. ChemCatChem 4, 1512–1524 (2012).

    Article  CAS  Google Scholar 

  31. Chia, M. et al. Selective hydrogenolysis of polyols and cyclic ethers over bifunctional surface sites on rhodium-rhenium catalysts. J. Am. Chem. Soc. 133, 12675–12689 (2011).

    Article  CAS  PubMed  Google Scholar 

  32. Wang, G. H. et al. Platinum-cobalt bimetallic nanoparticles in hollow carbon nanospheres for hydrogenolysis of 5-hydroxymethylfurfural. Nat. Mater. 13, 293–300 (2014).

    Article  PubMed  CAS  Google Scholar 

  33. Lykhach, Y. et al. Counting electrons on supported nanoparticles. Nat. Mater. 15, 284–288 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Yang, S., Tak, Y. J., Kim, J., Soon, A. & Lee, H. Support effects in single-atom platinum catalysts for electrochemical oxygen reduction. ACS Catal. 7, 1301–1307 (2017).

    Article  CAS  Google Scholar 

  35. Wei, H. S. et al. FeOx-supported platinum single-atom and pseudo-single-atom catalysts for chemoselective hydrogenation of functionalized nitroarenes. Nat. Commun. 5, 5634 (2014).

    Article  CAS  PubMed  Google Scholar 

  36. Zhang, S. R. et al. Catalysis on singly dispersed Rh atoms anchored on an inert support. ACS Catal. 8, 110–121 (2018).

    Article  CAS  Google Scholar 

  37. Kwak, J. H. et al. Coordinatively unsaturated Al3+ centers as binding sites for active catalyst phases of platinum on γ-Al2O3. Science 325, 1670–1673 (2009).

    Article  CAS  PubMed  Google Scholar 

  38. Kwak, J. H., Hu, J. Z., Kim, D. H., Szanyi, J. & Peden, C. H. F. Penta-coordinated Al3+ ions as preferential nucleation sites for BaO on γ-Al2O3: an ultra-high-magnetic field 27Al MAS NMR study. J. Catal. 251, 189–194 (2007).

    Article  CAS  Google Scholar 

  39. Bond, G. C. Heterogeneous Catalysis: Principles and Applications 2nd edn (Oxford Univ. Press, 1987).

  40. Ertl, G., Knözinger, H., Schuth, F. & Weitkamp, J. Handbook of Heterogeneous Catalysis 2nd edn (Wiley, 2008).

  41. Ding, K. et al. Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science 350, 189–192 (2015).

    Article  CAS  PubMed  Google Scholar 

  42. Jeong, H., Bae, J., Han, J. W. & Lee, H. Promoting effects of hydrothermal treatment on the activity and durability of Pd/CeO2 catalysts for CO oxidation. ACS Catal. 7, 7097–7105 (2017).

    Article  CAS  Google Scholar 

  43. Lang, R. et al. Hydroformylation of olefins by a rhodium single-atom catalyst with activity comparable to RhCl(PPh3)3. Angew. Chem. Int. Ed. 55, 16054–16058 (2016).

    Article  CAS  Google Scholar 

  44. Avakyan, L. A. et al. Evolution of the atomic structure of ceria-supported platinum nanocatalysts: formation of single layer platinum oxide and Pt-O-Ce and Pt-Ce linkages. J. Phys. Chem. C 120, 28057–28066 (2016).

    Article  CAS  Google Scholar 

  45. Zhang, C. C. & Lin, J. Visible-light induced oxo-bridged ZrIV-O-CeIII redox centre in tetragonal ZrO2-CeO2 solid solution for degradation of organic pollutants. Phys. Chem. Chem. Phys. 13, 3896–3905 (2011).

    Article  CAS  PubMed  Google Scholar 

  46. Lustemberg, P. G. et al. Room-temperature activation of methane and dry re-forming with CO2 on Ni-CeO2(111) surfaces: effect of Ce3+ sites and metal-support interactions on C-H bond cleavage. ACS Catal. 6, 8184–8191 (2016).

    Article  CAS  Google Scholar 

  47. USDRIVE Future Automotive Aftertreatment Solutions: the 150°C Challenge Workshop Report (Pacific Northwest National Laboratory, 2012).

  48. USDRIVE Advanced Combustion and Emission Control Technical Team Roadmap; Driving Research and Innovation for Vehicle Efficiency and Energy Sustainability (US Department of Energy, 2013).

  49. Lupescu, J. A. et al. Pd model catalysts: effect of aging duration on lean redispersion. Appl. Catal. B 185, 189–202 (2016).

    Article  CAS  Google Scholar 

  50. Kwak, J. H. et al. Role of pentacoordinated Al3+ ions in the high temperature phase transformation of γ-Al2O3. J. Phys. Chem. C 112, 9486–9492 (2008).

    Article  CAS  Google Scholar 

  51. Takeguchi, T. et al. Determination of dispersion of precious metals on CeO2-containing supports. Appl. Catal. A 293, 91–96 (2005).

    Article  CAS  Google Scholar 

  52. Gatica, J. M. et al. Rhodium dispersion in a Rh/Ce0.68Zr0.32O2 catalyst investigated by HRTEM and H2 chemisorption. J. Phys. Chem. B 104, 4667–4672 (2000).

    Article  CAS  Google Scholar 

  53. Lu, Z. S. & Yang, Z. X. Interfacial properties of NM/CeO2(111) (NM = noble metal atoms or clusters of Pd, Pt and Rh): a first principles study. J. Phys. Condens. Matter 22, 475003 (2010).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (grant numbers NRF-2016R1A5A1009592 and 2018R1A2A2A05018849). The experiments at PLS were supported in part by MSIP and POSTECH.

Author information

Authors and Affiliations

Authors

Contributions

H.J. and H.L. conceived the project. H.J. designed the synthesis of the catalysts. O.K. and J.K. performed the computational calculation. H.J., B.-S.K. and J.B. carried out the characterizations and catalytic reactions. S.S. helped with the X-ray absorption analysis, and H.-E.K. helped with the transmission electron microscopy analysis. H.J., O.K., J.K. and H.L. wrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Hyunjoo Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31, Tables 1–13 and references.

Supplementary Dataset 1

Atomic coordinates of the optimized DFT models

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, H., Kwon, O., Kim, BS. et al. Highly durable metal ensemble catalysts with full dispersion for automotive applications beyond single-atom catalysts. Nat Catal 3, 368–375 (2020). https://doi.org/10.1038/s41929-020-0427-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-020-0427-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing