Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis

Abstract

Single-atom precious metal catalysts hold the promise of perfect atom utilization, yet control of their activity and stability remains challenging. Here we show that engineering the electronic structure of atomically dispersed Ru1 on metal supports via compressive strain boosts the kinetically sluggish electrocatalytic oxygen evolution reaction (OER), and mitigates the degradation of Ru-based electrocatalysts in an acidic electrolyte. We construct a series of alloy-supported Ru1 using different PtCu alloys through sequential acid etching and electrochemical leaching, and find a volcano relation between OER activity and the lattice constant of the PtCu alloys. Our best catalyst, Ru1–Pt3Cu, delivers 90 mV lower overpotential to reach a current density of 10 mA cm−2, and an order of magnitude longer lifetime over that of commercial RuO2. Density functional theory investigations reveal that the compressive strain of the Ptskin shell engineers the electronic structure of the Ru1, allowing optimized binding of oxygen species and better resistance to over-oxidation and dissolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterizations of Cu@Ru1–PtCu3, Ru1–PtCu and Ru1–Pt3Cu.
Fig. 2: Fine-structure characterizations of Ru1–Pt3Cu.
Fig. 3: Activity and stability investigations of Ru1–Pt3Cu during the OER process.
Fig. 4: Overpotential and electronic structure on Ru1–PtxCu4–x(111) with pre-adsorbed oxygen.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Chu, S. & Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

    Article  CAS  Google Scholar 

  2. Russell, J. H., Nuttall, L. J. & Fickett, A. P. Hydrogen generation by solid polymer electrolyte water electrolysis. Am. Chem. Soc. Div. Fuel Chem. Prepr. 18, 24–40 (1973).

    CAS  Google Scholar 

  3. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  Google Scholar 

  4. Vojvodic, A. & Nørskov, J. K. Optimizing perovskites for the water-splitting reaction. Science 334, 1355–1356 (2011).

    Article  CAS  Google Scholar 

  5. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  CAS  Google Scholar 

  6. Spoeri, C. et al. The stability challenges of oxygen evolving catalysts: towards a common fundamental understanding and mitigation of catalyst degradation. Angew. Chem. Int. Ed. 56, 5994–6021 (2017).

    Article  CAS  Google Scholar 

  7. McCrory, C. C. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    Article  CAS  Google Scholar 

  8. Carmo, M. et al. A comprehensive review on PEM water electrolysis. Int. J. Hydrog. Energy 38, 4901–4934 (2013).

    Article  CAS  Google Scholar 

  9. Lee, Y. et al. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    Article  CAS  Google Scholar 

  10. Stoerzinger, K. A. et al. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    Article  CAS  Google Scholar 

  11. Cherevko, S. et al. Dissolution of noble metals during oxygen evolution in acidic media. ChemCatChem 6, 2219–2223 (2014).

    Article  CAS  Google Scholar 

  12. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, 146–157 (2017).

    Article  Google Scholar 

  13. Stoerzinger, K. A. et al. The role of Ru redox in pH-dependent oxygen evolution on rutile ruthenium dioxide surfaces. Chem 2, 668–675 (2017).

    Article  CAS  Google Scholar 

  14. Chang, S. H. et al. Activity–stability relationship in the surface electrochemistry of the oxygen evolution reaction. Faraday Discuss. 176, 125–133 (2015).

    Article  Google Scholar 

  15. Danilovic, N. et al. Activity–stability trends for the oxygen evolution reaction on monometallic oxides in acidic environments. J. Phys. Chem. Lett. 5, 2474–2478 (2014).

    Article  CAS  Google Scholar 

  16. Roy, C. et al. Trends in activity and dissolution on RuO2 under oxygen evolution conditions: particles versus well-defined extended surfaces. ACS Energy Lett. 3, 2045–2051 (2018).

    Article  CAS  Google Scholar 

  17. Fabbri, E. et al. Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catal. Sci. Technol. 4, 3800–3821 (2014).

    Article  CAS  Google Scholar 

  18. Wohlfahrt-Mehrens, M. & Heitbaum, J. Oxygen evolution on Ru and RuO2 electrodes studied using isotope labelling and on-line mass spectrometry. J. Electroanal. Chem. 237, 251–260 (1987).

    Article  CAS  Google Scholar 

  19. Binninger, T. et al. Thermodynamic explanation of the universal correlation between oxygen evolution activity and corrosion of oxide catalysts. Sci. Rep. 5, 12167–12172 (2015).

    Article  CAS  Google Scholar 

  20. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    Article  CAS  Google Scholar 

  21. Iwakura, C., Hirao, K. & Tamura, H. Anodic evolution of oxygen on ruthenium in acidic solutions. Electrochim. Acta 22, 329–334 (1977).

    Article  CAS  Google Scholar 

  22. Hodnik, N. et al. New insights into corrosion of ruthenium and ruthenium oxide nanoparticles in acidic media. J. Phys. Chem. C 119, 10140–10147 (2015).

    Article  CAS  Google Scholar 

  23. Paoli, E. A. et al. Oxygen evolution on well-characterized mass-selected Ru and RuO2 nanoparticles. Chem. Sci. 6, 190–196 (2015).

    Article  CAS  Google Scholar 

  24. Rong, X., Parolin, J. & Kolpak, A. M. A fundamental relationship between reaction mechanism and stability in metal oxide catalysts for oxygen evolution. ACS Catal. 6, 1153–1158 (2016).

    Article  CAS  Google Scholar 

  25. Strasser, P. Free electrons to molecular bonds and back: closing the energetic oxygen reduction (ORR)–oxygen evolution (OER) cycle using core–shell nanoelectrocatalysts. Acc. Chem. Res. 49, 2658–2668 (2016).

    Article  CAS  Google Scholar 

  26. Kötz, R. et al. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. 172, 211–219 (1984).

    Article  Google Scholar 

  27. AlYami, N. M. et al. Tailoring ruthenium exposure to enhance the performance of fcc platinum@ruthenium core–shell electrocatalysts in the oxygen evolution reaction. Phys. Chem. Chem. Phys. 18, 16169–16178 (2016).

    Article  CAS  Google Scholar 

  28. Cui, C. et al. Compositional segregation in shaped Pt alloy nanoparticles and their structural behaviour during electrocatalysis. Nat. Mater. 12, 765–771 (2013).

    Article  CAS  Google Scholar 

  29. Gan, L. et al. Element-specific anisotropic growth of shaped platinum alloy nanocrystals. Science 346, 1502–1506 (2014).

    Article  CAS  Google Scholar 

  30. Strasser, P. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2, 454–460 (2010).

    Article  CAS  Google Scholar 

  31. Huang, X. et al. A versatile strategy to the selective synthesis of Cu nanocrystals and the in situ conversion to CuRu nanotubes. Nanoscale 5, 6284–6290 (2013).

    Article  CAS  Google Scholar 

  32. Baletto, F. & Ferrando, R. Structural properties of nanoclusters: energetic, thermodynamic, and kinetic effects. Rev. Mod. Phys. 77, 371–422 (2005).

    Article  CAS  Google Scholar 

  33. Kyriakou, G. et al. Isolated metal atom geometries as a strategy for selective heterogeneous hydrogenations. Science 335, 1209–1212 (2012).

    Article  CAS  Google Scholar 

  34. Alayoglu, S. et al. Ru–Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat. Mater. 7, 333–338 (2008).

    Article  CAS  Google Scholar 

  35. Li, J. et al. Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat. Energy 2, 17111–17119 (2017).

    Article  CAS  Google Scholar 

  36. Denton, A. R. & Ashcroft, N. W. Vegard’s law. Phys. Rev. A 43, 3161–3164 (1991).

    Article  CAS  Google Scholar 

  37. Shi, Y. et al. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 137, 7365–7370 (2015).

    Article  CAS  Google Scholar 

  38. Nayak, S., McPherson, I. J. & Vincent, K. A. Adsorbed intermediates in oxygen reduction on platinum nanoparticles observed by in situ IR spectroscopy. Angew. Chem. 130, 13037–13040 (2018).

    Article  Google Scholar 

  39. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 315, 493–497 (2007).

    Article  CAS  Google Scholar 

  40. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  Google Scholar 

  41. Suntivich, J. et al. A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383–1385 (2011).

    Article  CAS  Google Scholar 

  42. Seitz, L. C. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 353, 1011–1014 (2016).

    Article  CAS  Google Scholar 

  43. Bajdich, M. et al. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    Article  CAS  Google Scholar 

  44. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11185 (1996).

    Article  CAS  Google Scholar 

  46. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  48. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  49. Rossmeisl, J., Logadottir, A. & Nørskov, J. K. Electrolysis of water on (oxidized) metal surfaces. Chem. Phys. 319, 178–184 (2005).

    Article  CAS  Google Scholar 

  50. Rossmeisl, J. et al. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    Article  CAS  Google Scholar 

  51. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    Article  CAS  Google Scholar 

  52. Gilbert, P. Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972).

    Article  CAS  Google Scholar 

  53. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  54. Chen, C. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 343, 1339–1343 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2017YFA0208300, 2017YFA0700104, 2017YFB0602205 and 2018YFA0208603), the National Natural Science Foundation of China (21522107, 21671180, 91645202, 91421315, 21521091, 21390393 and U1463202) and the Chinese Academy of Sciences (QYZDJ-SSW-SLH054). The authors acknowledge funding support from CAS Fujian Institute of Innovation, and thank the photoemission endstations BL1W1B in the Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in the Shanghai Synchrotron Radiation Facility (SSRF) and BL10B and BL11U in the National Synchrotron Radiation Laboratory (NSRL) for help with characterizations.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. and Y.L. designed the study. Y.Y., X.W., G.W. and W.W. carried out the sample synthesis and electrochemical measurements. K.Z., R.L., W.Y., D.H. and J.L. performed the electron-microscopy characterization. S.H., W.L., Z.H. and C.R. finished the DFT calculations and analysis. W.C., Y.W. and J.D. carried out the in situ and ex situ X-ray absorption fine structure and analysis. Y.C. and B.Z. performed the in situ infrared experiment. Y.W., Y.Y., S.H. and W.L. wrote the manuscript. The other authors provided reagents and performed some of the experiments. P.S. reviewed the data and revised portions of the manuscript, triggering helpful discussions.

Corresponding authors

Correspondence to Wei-Xue Li or Yuen Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–33, Supplementary Tables 1–9, Supplementary Notes 1-7 and Supplementary References.

Supplementary Data 1

Atomic coordinates of the optimized models.

Supplementary Video 1

Animated voxel recording the tomogram rotation of Cu@Ru1–PtCu3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Hu, S., Chen, W. et al. Engineering the electronic structure of single atom Ru sites via compressive strain boosts acidic water oxidation electrocatalysis. Nat Catal 2, 304–313 (2019). https://doi.org/10.1038/s41929-019-0246-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0246-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing