Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fundamentals of C–O bond activation on metal oxide catalysts


Fundamental knowledge of the active site requirements for the selective activation of C–O bonds over heterogeneous catalysts is required to design multistep processes for the synthesis of complex chemicals. Here we employ reaction kinetics measurements, extensive catalyst characterization, first principles calculations and microkinetic modelling to reveal metal oxides as a general class of catalysts capable of selectively cleaving C–O bonds with unsaturation at the α position, at a moderate temperature and H2 pressure. Strikingly, metal oxides are considerably more active catalysts than commonly employed VIIIB and IB transition metal catalysts. We identify the normalized Gibbs free energy of oxide formation as both a reactivity and a catalyst stability descriptor and demonstrate the generality of the radical-mediated, reverse Mars–van Krevelen C–O bond activation mechanism on oxygen vacancies, previously established only for RuO2. Importantly, we provide evidence that the substrate plays an equally key role to the catalyst in C–O bond activation.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Vacancy-mediated hydrodeoxygenation mechanism.
Fig. 2: Kinetics and characterization of selected oxide catalysts.
Fig. 3: Volcano dependence of the C–O scission rate on M–O bond strength.
Fig. 4: Operando characterization of oxides as a function of temperature and time.
Fig. 5: Oxide surface terminations at the experimental H2 chemical potential (–10.40 kJ mol–1).
Fig. 6: Surface reactivity descriptor.
Fig. 7: Dependence of C–O bond scission reaction rate on the substrate.

Data availability

The data that support the plots in this paper and other findings are available from the corresponding author upon reasonable request. DFT-optimized geometries of atomistic models of metal oxide surfaces with adsorbates are included as part of the Supplementary Data Set 1.


  1. 1.

    Melis, A. Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant science 177, 272–280 (2009).

    CAS  Article  Google Scholar 

  2. 2.

    Centeno, A., Laurent, E. & Delmon, B. Influence of the support of CoMo sulfide catalysts and of the addition of potassium and platinum on the catalytic performances for the hydrodeoxygenation of carbonyl, carboxyl and guaiacol-type molecules. J. Catal. 154, 288–298 (1995).

    CAS  Article  Google Scholar 

  3. 3.

    Ferrari, M., Bosmans, S., Maggi, R., Delmon, B. & Grange, P. CoMo/carbon hydrodeoxygenation catalysts: influence of the hydrogen sulfide partial pressure and of the sulfidation temperature. Catal. Today 65, 257–264 (2001).

    CAS  Article  Google Scholar 

  4. 4.

    Ferrari, M., Maggi, R., Delmon, B. & Grange, P. Influences of the hydrogen sulfide partial pressure and of a nitrogen compound on the hydrodeoxygenation activity of a CoMo/carbon catalyst. J. Catal. 198, 47–55 (2001).

    CAS  Article  Google Scholar 

  5. 5.

    Laurent, E. & Delmon, B. Study of the hydrodeoxygenation of carbonyl, carboxylic and guaiacyl groups over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. 1. Catalytic reaction schemes. Appl. Catal. A 109, 77–96 (1994).

    CAS  Article  Google Scholar 

  6. 6.

    Balakrishnan, M. et al. Novel pathways for fuels and lubricants from biomass optimized using life-cycle greenhouse gas assessment. Proc. Natl Acad. Sci. USA 112, 7645–7649 (2015).

    CAS  Article  Google Scholar 

  7. 7.

    Sacia, E. R. et al. Highly selective condensation of biomass-derived methyl ketones as a source of aviation fuel. ChemSusChem 8, 1726–1736 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Laurent, E. & Delmon, B. Influence of oxygen-containing, nitrogen-containing, and sulfur-containing-compounds on the hydrodeoxygenation of phenols over sulfided CoMo/γ-Al2O3 and NiMo/γ-Al2O3 catalysts. Ind. Eng. Chem. Res. 32, 2516–2524 (1993).

    CAS  Article  Google Scholar 

  9. 9.

    Luo, J. et al. Comparison of HMF hydrodeoxygenation over different metal catalysts in a continuous flow reactor. Appl. Catal. A 508, 86–93 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Luo, J. et al. The H2 pressure dependence of hydrodeoxygenation selectivities for furfural over Pt/C catalysts. Catal. Lett. 146, 711–717 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Jae, J., Zheng, W., Lobo, R. F. & Vlachos, D. G. Production of dimethylfuran from hydroxymethylfurfural through catalytic transfer hydrogenation with ruthenium supported on carbon. ChemSusChem 6, 1158–1162 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Jae, J. et al. The role of Ru and RuO2 in the catalytic transfer hydrogenation of 5-hydroxymethylfurfural for the production of 2,5-dimethylfuran. ChemCatChem 6, 848–856 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Panagiotopoulou, P., Martin, N. & Vlachos, D. G. Effect of hydrogen donor on liquid phase catalytic transfer hydrogenation of furfural over a Ru/RuO2/C catalyst. J. Mol. Catal. A 392, 223–228 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Panagiotopoulou, P. & Vlachos, D. G. Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst. Appl. Catal. A 480, 17–24 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Gilkey, M. J. et al. Mechanistic insights into metal Lewis acid-mediated catalytic transfer hydrogenation of furfural to 2-methylfuran. ACS Catal. 5, 3988–3994 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Mironenko, A. V. & Vlachos, D. G. Conjugation-driven ‘reverse Mars–van Krevelen’-type radical mechanism for low-temperature C–O bond activation. J. Am. Chem. Soc. 138, 8104–8113 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Prasomsri, T., Nimmanwudipong, T. & Roman-Leshkov, Y. Effective hydrodeoxygenation of biomass-derived oxygenates into unsaturated hydrocarbons by MoO3 using low H2 pressures. Energy Environ. Sci. 6, 1732–1738 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Prasomsri, T., Shetty, M., Murugappan, K. & Roman-Leshkov, Y. Insights into the catalytic activity and surface modification of MoO3 during the hydrodeoxygenation of lignin-derived model compounds into aromatic hydrocarbons under low hydrogen pressures. Energy Environ. Sci. 7, 2660–2669 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    Shetty, M., Murugappan, K., Prasomsri, T., Green, W. H. & Román-Leshkov, Y. Reactivity and stability investigation of supported molybdenum oxide catalysts for the hydrodeoxygenation (HDO) of m-cresol. J. Catal. 331, 86–97 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Nelson, R. C. et al. Experimental and theoretical insights into the hydrogen-efficient direct hydrodeoxygenation mechanism of phenol over Ru/TiO2. ACS Catal. 5, 6509–6523 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Omotoso, T., Boonyasuwat, S. & Crossley, S. P. Understanding the role of TiO2 crystal structure on the enhanced activity and stability of Ru/TiO2 catalysts for the conversion of lignin-derived oxygenates. Green Chem. 16, 645–652 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Gilkey, M. J., Mironenko, A. V., Yang, L., Vlachos, D. G. & Xu, B. Insights into the ring-opening of biomass-derived furanics over carbon-supported ruthenium. ChemSusChem 9, 3113–3121 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Louie, Y. L., Tang, J., Hell, A. M. L. & Bell, A. T. Kinetics of hydrogenation and hydrogenolysis of 2,5-dimethylfuran over noble metals catalysts under mild conditions. Appl. Catal. B 202, 557–568 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Nørskov, J. K., Clausen, B. S. & Topsøe, H. Understanding the trends in the hydrodesulfurization activity of the transition metal sulfides. Catal. Lett. 13, 1–8 (1992).

    Article  Google Scholar 

  25. 25.

    Chianelli, R. R., Pecoraro, T. A., Halbert, T. R., Pan, W. H. & Stiefel, E. I. Transition metal sulfide catalysis: relation of the synergic systems to the periodic trends in hydrodesulfurization. J. Catal. 86, 226–230 (1984).

    CAS  Article  Google Scholar 

  26. 26.

    Ugur, D., Storm, A. J., Verberk, R., Brouwer, J. C. & Sloof, W. G. Kinetics of reduction of a RuO2(110) film on Ru(0001) by H2. J. Phys. Chem. C 116, 26822–26828 (2012).

    CAS  Article  Google Scholar 

  27. 27.

    Wöll, C. The chemistry and physics of zinc oxide surfaces. Prog. Surf. Sci. 82, 55–120 (2007).

    Article  Google Scholar 

  28. 28.

    Werner, K. et al. Toward an understanding of selective alkyne hydrogenation on ceria: on the impact of O vacancies on H2 interaction with CeO2(111). J. Am. Chem. Soc. 139, 17608–17616 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Knapp, M. et al. Unusual process of water formation on RuO2(110) by hydrogen exposure at room temperature. J. Phys. Chem. B 110, 14007–14010 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    García-Melchor, M. & López, N. Homolytic products from heterolytic paths in H2 dissociation on metal oxides: the example of CeO2. J. Phys. Chem. C 118, 10921–10926 (2014).

    Article  Google Scholar 

  31. 31.

    Pan, J. M., Maschhoff, B., Diebold, U. & Madey, T. Interaction of water, oxygen, and hydrogen with TiO2(110) surfaces having different defect densities. J. Vac. Sci. Technol. A 10, 2470–2476 (1992).

    CAS  Article  Google Scholar 

  32. 32.

    Yin, X. L. et al. Diffusion versus desorption: complex behavior of H atoms on an oxide surface. Chemphyschem 9, 253–256 (2008).

    CAS  Article  Google Scholar 

  33. 33.

    Getsoian, A. B., Zhai, Z. & Bell, A. T. Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts. J. Am. Chem. Soc. 136, 13684–13697 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Christiansen, M. A., Mpourmpakis, G. & Vlachos, D. G. Density functional theory-computed mechanisms of ethylene and diethyl ether formation from ethanol on γ-Al2O3(100). ACS Catal. 3, 1965–1975 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Hu, Z. & Metiu, H. Halogen adsorption on CeO2: the role of Lewis acid–base pairing. J. Phys. Chem. C 116, 6664–6671 (2012).

    CAS  Article  Google Scholar 

  36. 36.

    Chrétien, S. & Metiu, H. Acid–base interaction and its role in alkane dissociative chemisorption on oxide surfaces. J. Phys. Chem. C 118, 27336–27342 (2014).

    Article  Google Scholar 

  37. 37.

    Deshlahra, P. & Iglesia, E. Reactivity and selectivity descriptors for the activation of C–H bonds in hydrocarbons and oxygenates on metal oxides. J. Phys. Chem. C 120, 16741–16760 (2016).

    CAS  Article  Google Scholar 

  38. 38.

    Derk, A. R. et al. Methane oxidation by lanthanum oxide doped with Cu, Zn, Mg, Fe, Nb, Ti, Zr, or Ta: the connection between the activation energy and the energy of oxygen-vacancy formation. Catal. Lett. 143, 406–410 (2013).

    CAS  Article  Google Scholar 

  39. 39.

    Moses, P. G. et al. Trends in hydrodesulfurization catalysis based on realistic surface models. Catal. Lett. 144, 1425–1432 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Wendt, S. et al. Formation and splitting of paired hydroxyl groups on reduced TiO2(110). Phys. Rev. Lett. 96, 066107 (2006).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, H. & Iglesia, E. Thiophene hydrodesulfurization catalysis on supported Ru clusters: mechanism and site requirements for hydrogenation and desulfurization pathways. J. Catal. 273, 245–256 (2010).

    CAS  Article  Google Scholar 

  42. 42.

    Yik, E. S. Hydrodesulfurization on Transition Metal Catalysts: Elementary Steps of C–S Bond Activation and Consequences of Bifunctional Synergies PhD thesis, UC Berkeley (2015).

  43. 43.

    Janik, M. J., Macht, J., Iglesia, E. & Neurock, M. Correlating acid properties and catalytic function: a first-principles analysis of alcohol dehydration pathways on polyoxometalates. J. Phys. Chem. C 113, 1872–1885 (2009).

    CAS  Article  Google Scholar 

  44. 44.

    Greeley, J. Theoretical heterogeneous catalysis: scaling relationships and computational catalyst design. Ann. Rev. Chem. Biomol. Eng. 7, 605–635 (2016).

    Article  Google Scholar 

  45. 45.

    Vojvodic, A. & Nørskov, J. K. New design paradigm for heterogeneous catalysts. Natl Sci. Rev. 2, 140–149 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    Li, G. J. & Kawi, S. High-surface-area SnO2: a novel semiconductor-oxide gas sensor. Mater. Lett. 34, 99–102 (1998).

    Article  Google Scholar 

  47. 47.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  49. 49.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  50. 50.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  52. 52.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  53. 53.

    Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    CAS  Article  Google Scholar 

  54. 54.

    Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107 (2016).

    CAS  Article  Google Scholar 

  55. 55.

    Singh, A. K., Janotti, A., Scheffler, M. & Van de Walle, C. G. Sources of electrical conductivity in SnO2. Phys. Rev. Lett. 101, 055502 (2008).

    Article  Google Scholar 

  56. 56.

    Janotti, A. & Van de Walle, C. G. Native point defects in ZnO. Phys. Rev. B 76, 165202 (2007).

    Article  Google Scholar 

  57. 57.

    Agarwal, V. & Metiu, H. Oxygen vacancy formation on α-MoO3 slabs and ribbons. J. Phys. Chem. C 120, 19252–19264 (2016).

    CAS  Article  Google Scholar 

  58. 58.

    Sun, L., Huang, X., Wang, L. & Janotti, A. Disentangling the role of small polarons and oxygen vacancies in CeO2. Phys. Rev. B 95, 245101 (2017).

    Article  Google Scholar 

  59. 59.

    Andersson, D. A., Simak, S., Johansson, B., Abrikosov, I. & Skorodumova, N. V. Modeling of CeO2, Ce2O3, and CeO2−x in the LDA+U formalism. Phys. Rev. B 75, 035109 (2007).

    Article  Google Scholar 

  60. 60.

    Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

  61. 61.

    Acharya, D. P. et al. Site-specific imaging of elemental steps in dehydration of diols on TiO2(110). ACS Nano 7, 10414–10423 (2013).

    CAS  Article  Google Scholar 

  62. 62.

    Ressler, T., Wienold, J., Jentoft, R. E. & Neisius, T. Bulk structural investigation of the reduction of MoO3 with propene and the oxidation of MoO2 with oxygen. J. Catal. 210, 67–83 (2002).

    CAS  Article  Google Scholar 

  63. 63.

    Tanemura, S. et al. Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by RF magnetron sputtering. Appl. Surf. Sci. 212, 654–660 (2003).

    Article  Google Scholar 

Download references


This material is based on work supported as part of the Catalysis Center for Energy Innovation, an Energy Frontier Research Center funded by the US Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences under award no. DE-SC0001004. Portions of this work were performed at the DuPont–Northwestern–Dow Collaborative Access Team (DND-CAT) located at Sector 5 of the APS. DND-CAT is supported by Northwestern University, E.I. DuPont de Nemours & Co. and The Dow Chemical Company. This research used resources of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. The authors also acknowledge the use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, which is supported by the US DOE, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. NSF award no. 1428149 is acknowledged for supporting the XPS instrumentation. We also acknowledge the resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the US DOE under contract no. DE-AC02-05CH11231 for computational time. Additional computational capacity was supported in part by the Information Technologies resources at the University of Delaware, specifically the high-performance computing resources.

Author information




K.A.G. and T.M. designed and performed all the experimental kinetic studies. K.A.G. designed and performed all characterization studies. A.V.M. developed and analysed the MKMs and introduced a new thermodynamic referencing scheme. A.V.M. performed the ab initio thermodynamics and DFT calculations. G.R.J. assisted with DFT calculations. D.G.V. directed the project and provided guidance for the experimental and theoretical work. The manuscript was written by K.A.G., A.V.M. and D.G.V. with input from all the authors.

Corresponding author

Correspondence to Dionisios G. Vlachos.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9; Supplementary Figures 1–28; Supplementary Tables 1–18; Supplementary References

Supplementary Dataset 1

DFT-optimized geometries of atomistic models of metal oxide surfaces with adsorbates

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goulas, K.A., Mironenko, A.V., Jenness, G.R. et al. Fundamentals of C–O bond activation on metal oxide catalysts. Nat Catal 2, 269–276 (2019).

Download citation

Further reading


Quick links