Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper

Abstract

The renewable-energy-powered electrocatalytic conversion of carbon dioxide and carbon monoxide into carbon-based fuels provides a means for the storage of renewable energy. We sought to convert carbon monoxide—an increasingly available and low-cost feedstock that could benefit from an energy-efficient upgrade in value—into n-propanol, an alcohol that can be directly used as engine fuel. Here we report that a catalyst consisting of highly fragmented copper structures can bring C1 and C2 binding sites together, and thereby promote further coupling of these intermediates into n-propanol. Using this strategy, we achieved an n-propanol selectivity of 20% Faradaic efficiency at a low potential of −0.45 V versus the reversible hydrogen electrode (ohmic corrected) with a full-cell energetic efficiency of 10.8%. We achieved a high reaction rate that corresponds to a partial current density of 8.5 mA cm–2 for n-propanol.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: DFT calculation results for C1, C2 and C3.
Fig. 2: Materials characterization.
Fig. 3: TEM imaging of crystalline structure of all the samples.
Fig. 4: Catalyst performance in a CORR flow cell.

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. 1.

    Won, D. H. et al. Highly efficient, selective, and stable CO2 electroreduction on a hexagonal Zn catalyst. Angew. Chem. Int. Ed. 55, 9297–9300 (2016).

    CAS  Article  Google Scholar 

  2. 2.

    Ma, M., Trześniewski, B. J., Xie, J. & Smith, W. A. Selective and efficient reduction of carbon dioxide to carbon monoxide on oxide-derived nanostructured silver electrocatalysts. Angew. Chem. Int. Ed. 55, 9748–9752 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    CAS  Article  Google Scholar 

  4. 4.

    Verma, S. et al. Insights into the low overpotential electroreduction of CO2 to CO on a supported gold catalyst in an alkaline flow electrolyzer. ACS Energy Lett. 3, 193–198 (2017).

    Article  Google Scholar 

  5. 5.

    Dai, L. et al. Ultrastable atomic copper nanosheets for selective electrochemical reduction of carbon dioxide. Sci. Adv. 3, e1701069 (2017).

    Article  Google Scholar 

  6. 6.

    Gao, S. et al. Ultrathin Co3O4 layers realizing optimized CO2 electroreduction to formate. Angew. Chem. Int. Ed. 55, 698–702 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Wang, Y., Zhou, J., Lv, W., Fang, H. & Wang, W. Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Appl. Surf. Sci. 362, 394–398 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Klinkova, A. et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal. 6, 8115–8120 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Zheng, X. et al. Sulfur-modulated tin sites enable highly selective electrochemical reduction of CO2 to formate. Joule 1, 794–805 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  11. 11.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Article  Google Scholar 

  12. 12.

    Pang, Y. et al. Joint tuning of nanostructured Cu-oxide morphology and local electrolyte programs high-rate CO2 reduction to C2H4. Green Chem. 19, 4023–4030 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    Ma, S. et al. Electroreduction of carbon dioxide to hydrocarbons using bimetallic Cu–Pd catalysts with different mixing patterns. J. Am. Chem. Soc. 139, 47–50 (2016).

    Article  Google Scholar 

  15. 15.

    Kuhl, K. P., Cave, E. R., Abram, D. N. & Jaramillo, T. F. New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces. Energy Environ. Sci. 5, 7050–7059 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Papa, A. J. in Ullmann’s Encyclopedia of Industrial Chemistry (eds Elvers, B. et al.) 243–254 (Wiley, Weinheim, 2000).

  18. 18.

    Hori, Y., Murata, A., Takahashi, R. & Suzuki, S. Enhanced formation of ethylene and alcohols at ambient temperature and pressure in electrochemical reduction of carbon dioxide at a copper electrode. J. Chem. Soc. Chem. Comm. 1, 17–19 (1988).

  19. 19.

    Ren, D., Wong, N. T., Handoko, A. D., Huang, Y. & Yeo, B. S. Mechanistic insights into the enhanced activity and stability of agglomerated Cu nanocrystals for the electrochemical reduction of carbon dioxide to n-propanol. J. Phys. Chem. Lett. 7, 20–24 (2015).

    Article  Google Scholar 

  20. 20.

    Kim, D., Kley, C. S., Li, Y. & Yang, P. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl Acad. Sci. USA 114, 10560–10565 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Rahaman, M., Dutta, A., Zanetti, A. & Broekmann, P. Electrochemical reduction of CO2 into multicarbon alcohols on activated Cu mesh catalysts: an identical location (IL) study. ACS Catal. 7, 7946–7956 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Jiang, K. et al. Metal ion cycling of Cu foil for selective C–C coupling in electrochemical CO2 reduction. Nat. Catal. 1, 111–119 (2018).

    Article  Google Scholar 

  23. 23.

    Zhuang, T. T. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat. Catal. 1, 421–428 (2018).

    Article  Google Scholar 

  24. 24.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Ou, L., Long, W., Chen, Y. & Jin, J. New reduction mechanism of CO dimer by hydrogenation to C2H4 on a Cu(100) surface: theoretical insight into the kinetics of the elementary steps. RSC Adv. 5, 96281–96289 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Xiao, H., Cheng, T., Goddard, W. A. III & Sundararaman, R. Mechanistic explanation of the pH dependence and onset potentials for hydrocarbon products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 138, 483–486 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Birat, J. P. & Maizières-lès-Metz, D. Global Technology Roadmap for CCS in Industry—Steel Sectorial Report (UNIDO Global Technology Roadmap for CCS in Industry—Sectoral Experts Meeting, Amsterdam, 2010.)

  28. 28.

    Li, C. W., Ciston, J. & Kanan, M. W. Electroreduction of carbon monoxide to liquid fuel on oxide-derived nanocrystalline copper. Nature 508, 504–507 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Verdaguer-Casadevall, A. et al. Probing the active surface sites for CO reduction on oxide-derived copper electrocatalysts. J. Am. Chem. Soc. 137, 9808–9811 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    Raciti, D. et al. Low-overpotential electroreduction of carbon monoxide using copper nanowires. ACS Catal. 7, 4467–4472 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Bertheussen, E. et al. Acetaldehyde as an intermediate in the electroreduction of carbon monoxide to ethanol on oxide-derived copper. Angew. Chem. Int. Ed. 55, 1450–1454 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Jouny, M., Luc, W. & Jiao, F. High-rate electroreduction of carbon monoxide to multi-carbon products. Nat. Catal. 1, 748–755 (2018).

    Article  Google Scholar 

  33. 33.

    Zhuang, T. T. et al. Copper nanocavities confine intermediates for efficient electrosynthesis of C3 alcohol fuels from carbon monoxide. Nat. Cat. 1, 946–951 (2018).

    Article  Google Scholar 

  34. 34.

    Li, J. et al. Copper adparticle enabled selective electrosynthesis of n-propanol. Nat. Commun. 9, 4614 (2018).

    Article  Google Scholar 

  35. 35.

    Feng, X., Jiang, K., Fan, S. & Kanan, M. W. A direct grain-boundary-activity correlation for CO electroreduction on Cu nanoparticles. ACS Cent. Sci. 2, 169–174 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Cheng, T., Xiao, H. & Goddard, W. A. Nature of the active sites for CO reduction on copper nanoparticles; suggestions for optimizing performance. J. Am. Chem. Soc. 139, 11642–11645 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Xiao, H., Cheng, T. & Goddard, W. A. Atomistic mechanisms underlying selectivities in C1 and C2 products from electrochemical reduction of CO on Cu(111). J. Am. Chem. Soc. 139, 130–136 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phys. Chem. Lett. 6, 2032–2037 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Zhuang, T. T. et al. Controlled synthesis of kinked ultrathin ZnS nanorods/nanowires triggered by chloride ions: a case study. Small 10, 1394–1402 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, S., Kim, D. & Lee, J. Electrocatalytic production of C3–C4 compounds by conversion of CO2 on a chloride-induced bi-phasic Cu2O–Cu catalyst. Angew. Chem. Int. Ed. 54, 14701–14705 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Dinh, C. T. et al. Selective CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Mariano, R. G., McKelvey, K., White, H. S. & Kanan, M. W. Selective increase in CO2 electroreduction activity at grain-boundary surface terminations. Science 358, 1187–1192 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  44. 44.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  45. 45.

    Kresse, G. & Hafner, J. Ab-Initio molecular-dynamics simulation of the liquid–metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    CAS  Article  Google Scholar 

  46. 46.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    CAS  Article  Google Scholar 

  47. 47.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  48. 48.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  49. 49.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  50. 50.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  51. 51.

    Michaelides, A. et al. Identification of general linear relationships between activation energies and enthalpy changes for dissociation reactions at surfaces. J. Am. Chem. Soc. 125, 3704–3705 (2003).

    CAS  Article  Google Scholar 

  52. 52.

    Liu, Z. P. & Hu, P. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C–H and C–O bond breaking/making on flat, stepped, and kinked metal surfaces. J. Am. Chem. Soc. 125, 1958–1967 (2003).

    CAS  Article  Google Scholar 

  53. 53.

    Alavi, A., Hu, P. J., Deutsch, T., Silvestrelli, P. L. & Hutter, J. CO oxidation on Pt(111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998).

    CAS  Article  Google Scholar 

  54. 54.

    Rumble, J. R. CRC Handbook of Chemistry and Physics 99th edn, Section 5 (CRC Press, 2018).

  55. 55.

    Speight, J. G. Lange’s Handbook of Chemistry 16th edn, Section 6 (McGraw-Hill Companies New York, 2005).

  56. 56.

    Zheng, X. et al. Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption. Nat. Chem. 10, 149 (2018).

    CAS  Article  Google Scholar 

  57. 57.

    Zhou, H. et al. Water splitting by electrolysis at high current density under 1.6 volt. Energy Environ. Sci. 11, 2858–2864 (2018).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Ontario Research Fund Research-Excellence Program, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the CIFAR Bio-Inspired Solar Energy programme, and the University of Toronto Connaught Program. This research used synchrotron resources of the Advanced Photon Source, an Office of Science User Facility operated for the US Department of Energy (DOE) Office of Science by the Argonne National Laboratory, and was supported by the US DOE under contract no. DE-AC02-06CH11357, and the Canadian Light Source and its funding partners. The authors thank Z. Finfrock and M. J. Ward for technical support at the Sector 20BM beamline. D.S. acknowledges the NSERC E.W.R. Steacie Memorial Fellowship. J.L. acknowledges the Banting Postdoctoral Fellowships program. All DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions.

Author information

Affiliations

Authors

Contributions

E.H.S. and D.S. supervised the project. Y.P. and J.L. designed the CORR experiments. Y.P., J.L., T.-T.Z., X.W. and Y.X. carried out the CORR experiments. P.D.L. assisted the catalyst preparation. J.L. carried out the operando XAS characterization. Z.W. performed the DFT calculations. C.-S.T., P.-L.H. and L.-J.C. carried out TEM imaging. Y.P., Y. L. and D.W. performed the TEM analysis. Y.P., J.L., Z.-Q.L, C.Z., J.P.E., C.-T.D., F.L. and M.Z. carried out the product detection via NMR and gas chromatography. Z.-Q.L. carried out the XRD characterization. All the authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Edward H. Sargent or David Sinton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–42 and Supplementary Tables 1–2.

Supplementary Data 1

Data associated to Fig. 4.

Supplementary Data 2

Optimized geometry for the initial state of CO dimerization on copper interface model.

Supplementary Data 3

Optimized geometry for the final state of CO dimerization on copper interface model.

Supplementary Data 4

Optimized geometry for the transition state of CO dimerization on copper interface model.

Supplementary Data 5

Optimized geometry for the initial state of CO-OCCO coupling on copper interface model.

Supplementary Data 6

Optimized geometry for the final state of of CO-OCCO coupling on copper interface model.

Supplementary Data 7

Optimized geometry for the transition state of CO-OCCO coupling on copper interface model.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pang, Y., Li, J., Wang, Z. et al. Efficient electrocatalytic conversion of carbon monoxide to propanol using fragmented copper. Nat Catal 2, 251–258 (2019). https://doi.org/10.1038/s41929-019-0225-7

Download citation

Further reading