A comprehensive metabolic map for production of bio-based chemicals

An Author Correction to this article was published on 10 September 2019

This article has been updated

Abstract

Production of industrial chemicals using renewable biomass feedstock is becoming increasingly important to address limited fossil resources, climate change and other environmental problems. To develop high-performance microbial cell factories, equivalent to chemical plants, microorganisms undergo systematic metabolic engineering to efficiently convert biomass-derived carbon sources into target chemicals. Over the past two decades, many engineered microorganisms capable of producing natural and non-natural chemicals have been developed. This Review details the current status of representative industrial chemicals that are produced through biological and/or chemical reactions. We present a comprehensive bio-based chemicals map that highlights the strategies and pathways of single or multiple biological reactions, chemical reactions and combinations thereof towards production of particular chemicals of interest. Future challenges are also discussed to enable production of even more diverse chemicals and more efficient production of chemicals from renewable feedstocks.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Industrial chemicals and materials produced using both biological and chemical methods.
Fig. 2: Industrial chemicals and materials produced using only biological reactions.
Fig. 3: Novel biosynthetic pathways by retrobiosynthesis and enzyme engineering.
Fig. 4: Production processes using biological and/or chemical reactions.

Change history

  • 10 September 2019

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    A European Strategy for Plastics in a Circular Economy (European Commission, 2018).

  2. 2.

    The future of plastic. Nat. Commun. 9, 2157 (2018).

  3. 3.

    Yang, D., Cho, J. S., Choi, K. R., Kim, H. U. & Lee, S. Y. Systems metabolic engineering as an enabling technology in accomplishing sustainable development goals. Microb. Biotechnol. 10, 1254–1258 (2017).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lee, J. W. et al. Systems metabolic engineering of microorganisms for natural and non-natural chemicals. Nat. Chem. Biol. 8, 536–546 (2012).

    CAS  PubMed  Google Scholar 

  5. 5.

    Chubukov, V., Mukhopadhyay, A., Petzold, C. J., Keasling, J. D. & Martin, H. G. Synthetic and systems biology for microbial production of commodity chemicals. NPJ Syst. Biol. Appl. 2, 16009 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Clomburg, J. M., Crumbley, A. M. & Gonzalez, R. Industrial biomanufacturing: the future of chemical production. Science 355, aag0804 (2017).

    PubMed  Google Scholar 

  7. 7.

    Lee, S. Y. & Kim, H. U. Systems strategies for developing industrial microbial strains. Nat. Biotechnol. 33, 1061–1072 (2015).

    CAS  PubMed  Google Scholar 

  8. 8.

    Lee, J. W., Kim, T. Y., Jang, Y. S., Choi, S. & Lee, S. Y. Systems metabolic engineering for chemicals and materials. Trends Biotechnol. 29, 370–378 (2011).

    CAS  PubMed  Google Scholar 

  9. 9.

    Jang, Y. S. et al. Bio-based production of C2–C6 platform chemicals. Biotechnol. Bioeng. 109, 2437–2459 (2012).

    CAS  PubMed  Google Scholar 

  10. 10.

    Sarria, S., Kruyer, N. S. & Peralta-Yahya, P. Microbial synthesis of medium-chain chemicals from renewables. Nat. Biotechnol. 35, 1158–1166 (2017).

    CAS  PubMed  Google Scholar 

  11. 11.

    Pfleger, B. F., Gossing, M. & Nielsen, J. Metabolic engineering strategies for microbial synthesis of oleochemicals. Metab. Eng. 29, 1–11 (2015).

    CAS  PubMed  Google Scholar 

  12. 12.

    Becker, J. & Wittmann, C. Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew. Chem. Int. Ed. Engl. 54, 3328–3350 (2015).

    CAS  PubMed  Google Scholar 

  13. 13.

    Rudroff, F. et al. Opportunities and challenges for combining chemo- and biocatalysis. Nat. Catal. 1, 12–22 (2018).

    Google Scholar 

  14. 14.

    Zhang, M. M., Wang, Y., Ang, E. L. & Zhao, H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 33, 963–987 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Krivoruchko, A., Zhang, Y., Siewers, V., Chen, Y. & Nielsen, J. Microbial acetyl-CoA metabolism and metabolic engineering. Metab. Eng. 28, 28–42 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Long, M. R., Ong, W. K. & Reed, J. L. Computational methods in metabolic engineering for strain design. Curr. Opin. Biotechnol. 34, 135–141 (2015).

    CAS  PubMed  Google Scholar 

  17. 17.

    Copeland, W. B. et al. Computational tools for metabolic engineering. Metab. Eng. 14, 270–280 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    King, Z. A., Lloyd, C. J., Feist, A. M. & Palsson, B. O. Next-generation genome-scale models for metabolic engineering. Curr. Opin. Biotechnol. 35, 23–29 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    Chae, T. U., Choi, S. Y., Kim, J. W., Ko, Y. S. & Lee, S. Y. Recent advances in systems metabolic engineering tools and strategies. Curr. Opin. Biotechnol. 47, 67–82 (2017).

    CAS  PubMed  Google Scholar 

  20. 20.

    Choi, K. R. & Lee, S. Y. CRISPR technologies for bacterial systems: current achievements and future directions. Biotechnol. Adv. 34, 1180–1209 (2016).

    CAS  PubMed  Google Scholar 

  21. 21.

    Jensen, M. K. & Keasling, J. D. Recent applications of synthetic biology tools for yeast metabolic engineering. FEMS Yeast Res. 15, 1–10 (2015).

    CAS  PubMed  Google Scholar 

  22. 22.

    Smanski, M. J. et al. Synthetic biology to access and expand nature’s chemical diversity. Nat. Rev. Microbiol. 14, 135–149 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res. 46, 633–639 (2018).

    Google Scholar 

  24. 24.

    Hadadi, N., Hafner, J., Shajkofci, A., Zisaki, A. & Hatzimanikatis, V. ATLAS of Biochemistry: A repository of all possible biochemical reactions for synthetic biology and metabolic engineering studies. ACS Synth. Biol. 5, 1155–1166 (2016).

    CAS  PubMed  Google Scholar 

  25. 25.

    Hadadi, N. & Hatzimanikatis, V. Design of computational retrobiosynthesis tools for the design of de novo synthetic pathways. Curr. Opin. Chem. Biol. 28, 99–104 (2015).

    CAS  PubMed  Google Scholar 

  26. 26.

    Kumar, A., Wang, L., Ng, C. Y. & Maranas, C. D. Pathway design using de novo steps through uncharted biochemical spaces. Nat. Commun. 9, 184 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Shin, J. H., Kim, H. U., Kim, D. I. & Lee, S. Y. Production of bulk chemicals via novel metabolic pathways in microorganisms. Biotechnol. Adv. 31, 925–935 (2013).

    CAS  PubMed  Google Scholar 

  28. 28.

    Feher, T. et al. Validation of RetroPath, a computer-aided design tool for metabolic pathway engineering. Biotechnol. J. 9, 1446–1457 (2014).

    CAS  PubMed  Google Scholar 

  29. 29.

    Kan, S. B., Lewis, R. D., Chen, K. & Arnold, F. H. Directed evolution of cytochrome c for carbon-silicon bond formation: Bringing silicon to life. Science 354, 1048–1051 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Kan, S. B. J., Huang, X., Gumulya, Y., Chen, K. & Arnold, F. H. Genetically programmed chiral organoborane synthesis. Nature 552, 132–136 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Choi, S., Song, C. W., Shin, J. H. & Lee, S. Y. Biorefineries for the production of top building block chemicals and their derivatives. Metab. Eng. 28, 223–239 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Pereira, B. et al. Efficient utilization of pentoses for bioproduction of the renewable two-carbon compounds ethylene glycol and glycolate. Metab. Eng. 34, 80–87 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Chae, T. U., Choi, S. Y., Ryu, J. Y. & Lee, S. Y. Production of ethylene glycol from xylose by metabolically engineered Escherichia coli. AIChE J. (2018).

  34. 34.

    Sousa, A. F. et al. Biobased polyesters and other polymers from 2,5-furandicarboxylic acid: a tribute to furan excellency. Polym. Chem. 6, 5961–5983 (2015).

    CAS  Google Scholar 

  35. 35.

    Luo, Z. W., Kim, W. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for efficient production of 2-pyrone-4,6-dicarboxylic acid from glucose. ACS Synth. Biol. 7, 2296–2307 (2018).

    CAS  PubMed  Google Scholar 

  36. 36.

    Masuno, M. N. et al. Methods of producing para-xylene and terephthalic acid. US patent 2013/0245316 A1 (2013).

  37. 37.

    Luo, Z. W. & Lee, S. Y. Biotransformation of p-xylene into terephthalic acid by engineered Escherichia coli. Nat. Commun. 8, 15689 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Tomas, R. A., Bordado, J. C. & Gomes, J. F. p-Xylene oxidation to terephthalic acid: a literature review oriented toward process optimization and development. Chem. Rev. 113, 7421–7469 (2013).

    CAS  PubMed  Google Scholar 

  39. 39.

    Sangeetha, V. H., Deka, H., Varghese, T. O. & Nayak, S. K. State of the art and future prospectives of poly(lactic acid) based blends and composites. Polym. Compos. 39, 81–101 (2018).

    CAS  Google Scholar 

  40. 40.

    Sauer, M., Porro, D., Mattanovich, D. & Branduardi, P. 16 years research on lactic acid production with yeast - ready for the market? Biotechnol. Genet. Eng. Rev. 27, 229–256 (2010).

    CAS  PubMed  Google Scholar 

  41. 41.

    Jung, Y. K., Kim, T. Y., Park, S. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105, 161–171 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    Paddon, C. J. et al. High-level semi-synthetic production of the potent antimalarial artemisinin. Nature 496, 528–532 (2013).

    CAS  PubMed  Google Scholar 

  43. 43.

    Burk, M. J., Burgard, A. P., Osterhout, R. E. & Pharkya, P. Microorganisms and methods for the biosynthesis of adipate, hexamethylenediamine and 6-aminocaproic acid. US patent 2010/0317069 A1 (2010).

  44. 44.

    Cordova, L. T. & Alper, H. S. Central metabolic nodes for diverse biochemical production. Curr. Opin. Chem. Biol. 35, 37–42 (2016).

    CAS  PubMed  Google Scholar 

  45. 45.

    Sánchez-Riera, F., Cameron, D. C. & Cooney, C. L. Influence of environmental factors in the production of R(−)-1, 2-propanediol by Clostridium thermosaccharolyticum. Biotechnol. Lett. 9, 449–454 (1987).

    Google Scholar 

  46. 46.

    Siebert, D. & Wendisch, V. F. Metabolic pathway engineering for production of 1,2-propanediol and 1-propanol by Corynebacterium glutamicum. Biotechnol. Biofuels 8, 91 (2015).

    PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nakamura, C. E. & Whited, G. M. Metabolic engineering for the microbial production of 1,3-propanediol. Curr. Opin. Biotechnol. 14, 454–459 (2003).

    CAS  PubMed  Google Scholar 

  48. 48.

    Chen, Z. et al. Metabolic engineering of Corynebacterium glutamicum for the production of 3-hydroxypropionic acid from glucose and xylose. Metab. Eng. 39, 151–158 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Li, Y., Wang, X., Ge, X. & Tian, P. High production of 3-hydroxypropionic acid in Klebsiella pneumoniae by systematic optimization of glycerol metabolism. Sci. Rep. 6, 26932 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Chu, H. S. et al. Direct fermentation route for the production of acrylic acid. Metab. Eng. 32, 23–29 (2015).

    CAS  PubMed  Google Scholar 

  51. 51.

    Matsubara, M. et al. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. J. Biosci. Bioeng. 122, 421–426 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Yang, P. et al. A new strategy for production of 5-aminolevulinic acid in recombinant Corynebacterium glutamicum with high yield. Appl. Environ. Microbiol. 82, 2709–2717 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Chu, H. S. et al. Metabolic engineering of 3-hydroxypropionic acid biosynthesis in Escherichia coli. Biotechnol. Bioeng. 112, 356–364 (2015).

    CAS  PubMed  Google Scholar 

  54. 54.

    Karp, E. M. et al. Renewable acrylonitrile production. Science 358, 1307–1310 (2017).

    CAS  PubMed  Google Scholar 

  55. 55.

    Craciun, L. et al. Preparation of acrylic acid derivatives from α- or β-hydroxy carboxylic acids. US patent US7538247B2 (2009).

  56. 56.

    Corma, A., Iborra, S. & Velty, A. Chemical routes for the transformation of biomass into chemicals. Chem. Rev. 107, 2411–2502 (2007).

    CAS  PubMed  Google Scholar 

  57. 57.

    Dishisha, T., Pyo, S. H. & Hatti-Kaul, R. Bio-based 3-hydroxypropionic- and acrylic acid production from biodiesel glycerol via integrated microbial and chemical catalysis. Microb. Cell Fact. 14, 200 (2015).

    PubMed  PubMed Central  Google Scholar 

  58. 58.

    Guo, Z. et al. Dehydration of lactic acid to acrylic acid over lanthanum phosphate catalysts: the role of Lewis acid sites. Phys. Chem. Chem. Phys. 18, 23746–23754 (2016).

    CAS  PubMed  Google Scholar 

  59. 59.

    Meng, Y., Xue, Y., Yu, B., Gao, C. & Ma, Y. Efficient production of l-lactic acid with high optical purity by alkaliphilic Bacillus sp. WL-S20. Bioresour. Technol. 116, 334–339 (2012).

    CAS  PubMed  Google Scholar 

  60. 60.

    Thomas, K. C. & Ingledew, W. M. Production of 21% (v/v) ethanol by fermentation of very high gravity (VHG) wheat mashes. J. Ind. Microbiol. Biotechnol. 10, 61–68 (1992).

    CAS  Google Scholar 

  61. 61.

    Ma, C. et al. Enhanced 2,3-butanediol production by Klebsiella pneumoniae SDM. Appl. Microbiol. Biotechnol. 82, 49–57 (2009).

    CAS  PubMed  Google Scholar 

  62. 62.

    Kim, J. W. et al. Enhanced production of 2,3-butanediol by engineered Saccharomyces cerevisiae through fine-tuning of pyruvate decarboxylase and NADH oxidase activities. Biotechnol. Biofuels 9, 265 (2016).

    PubMed  PubMed Central  Google Scholar 

  63. 63.

    Atsumi, S., Hanai, T. & Liao, J. C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature 451, 86–89 (2008).

    CAS  PubMed  Google Scholar 

  64. 64.

    Abdel-Rahman, M. A., Tashiro, Y. & Sonomoto, K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 31, 877–902 (2013).

    CAS  PubMed  Google Scholar 

  65. 65.

    Kwon, S., Yoo, I. K., Lee, W. G., Chang, H. N. & Chang, Y. K. High-rate continuous production of lactic acid by Lactobacillus rhamnosus in a two-stage membrane cell-recycle bioreactor. Biotechnol. Bioeng. 73, 25–34 (2001).

    CAS  PubMed  Google Scholar 

  66. 66.

    Carlos Serrano-Ruiz, J. & Dumesic, J. A. Catalytic upgrading of lactic acid to fuels and chemicals by dehydration/hydrogenation and C–C coupling reactions. Green Chem. 11, 1101–1104 (2009).

    Google Scholar 

  67. 67.

    Carlson, T. L. & Peters, J., E. M. Low PH lactic acid fermentation. US patent US6475759B1 (2002).

  68. 68.

    Choi, S. Y. et al. One-step fermentative production of poly(lactate-co-glycolate) from carbohydrates in Escherichia coli. Nat. Biotechnol. 34, 435–440 (2016).

    CAS  PubMed  Google Scholar 

  69. 69.

    Choi, S. Y. et al. Engineering the xylose-catabolizing Dahms pathway for production of poly(d-lactateco-glycolate) and poly(d-lactate-co-glycolate-co-d-2-hydroxybutyrate) in. Escherichia coli. Microb. Biotechnol. 10, 1353–1364 (2017).

    CAS  PubMed  Google Scholar 

  70. 70.

    Shi, D. J., Wang, C. L. & Wang, K. M. Genome shuffling to improve thermotolerance, ethanol tolerance and ethanol productivity of Saccharomyces cerevisiae. J. Ind. Microbiol. Biotechnol. 36, 139–147 (2009).

    CAS  PubMed  Google Scholar 

  71. 71.

    Alper, H., Moxley, J., Nevoigt, E., Fink, G. R. & Stephanopoulos, G. Engineering yeast transcription machinery for improved ethanol tolerance and production. Science 314, 1565–1568 (2006).

    CAS  PubMed  Google Scholar 

  72. 72.

    Fan, D., Dai, D. J. & Wu, H. S. Ethylene formation by catalytic dehydration of ethanol with industrial considerations. Materials 6, 101–115 (2012).

    PubMed  PubMed Central  Google Scholar 

  73. 73.

    Song, D. Kinetic model development for dehydration of 2,3-butanediol to 1,3-butadiene and methyl ethyl ketone over an amorphous calcium phosphate catalyst. Ind. Eng. Chem. Res. 55, 11664–11671 (2016).

    CAS  Google Scholar 

  74. 74.

    Vecchini, N., Galeotti, A. & Pisano, A. Process for the production of 1,3 butadiene from 1,3 butanediol. US patent 20170313633 A1 (2014).

  75. 75.

    Vecchini, N., Galeotti, A. & Pisano, A. Process for the production of 1,3-butandiene from 1,4-butanediol via tetrahydrofuran. WO patent 2016092517 (2016).

  76. 76.

    Kataoka, N., Vangnai, A. S., Tajima, T., Nakashimada, Y. & Kato, J. Improvement of (R)-1,3-butanediol production by engineered Escherichia coli. J. Biosci. Bioeng. 115, 475–480 (2013).

    CAS  PubMed  Google Scholar 

  77. 77.

    Burgard, A. P., Burk, M. J. & Pharkya, P. Methods and organisms for converting synthesis gas or other gaseous carbon sources and methanol to 1,3-butanediol. US patent 9284581 B2 (2009).

  78. 78.

    Baez, A., Cho, K. M. & Liao, J. C. High-flux isobutanol production using engineered Escherichia coli: a bioreactor study with in situ product removal. Appl. Microbiol. Biotechnol. 90, 1681–1690 (2011).

    CAS  PubMed  Google Scholar 

  79. 79.

    van Leeuwen, B. N., van der Wulp, A. M., Duijnstee, I., van Maris, A. J. & Straathof, A. J. Fermentative production of isobutene. Appl. Microbiol. Biotechnol. 93, 1377–1387 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80.

    Peters, M. W., Taylor, J. D., Jenni, M., Manzer, L. E. & Henton, D. E. Integrated process to selectively convert renewable isobutanol to p-xylene. US patent 2011/0087000 A1 (2011).

  81. 81.

    Moon, H. G. et al. One hundred years of clostridial butanol fermentation. FEMS Microbiol. Lett. 363, fnw001 (2016).

    PubMed  Google Scholar 

  82. 82.

    Patakova, P. et al. Comparative analysis of high butanol tolerance and production in clostridia. Biotechnol. Adv. 36, 721–738 (2018).

    CAS  PubMed  Google Scholar 

  83. 83.

    Jimenez-Bonilla, P. & Wang, Y. In situ biobutanol recovery from clostridial fermentations: a critical review. Crit. Rev. Biotechnol. 38, 469–482 (2018).

    CAS  PubMed  Google Scholar 

  84. 84.

    Lee, J. et al. Metabolic engineering of Clostridium acetobutylicum ATCC 824 for isopropanol-butanol-ethanol fermentation. Appl. Environ. Microbiol. 78, 1416–1423 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85.

    Anbarasan, P. et al. Integration of chemical catalysis with extractive fermentation to produce fuels. Nature 491, 235–239 (2012).

    CAS  PubMed  Google Scholar 

  86. 86.

    Beller, H. R., Lee, T. S. & Katz, L. Natural products as biofuels and bio-based chemicals: fatty acids and isoprenoids. Nat. Prod. Rep. 32, 1508–1526 (2015).

    CAS  PubMed  Google Scholar 

  87. 87.

    Peralta-Yahya, P. P., Zhang, F., del Cardayre, S. B. & Keasling, J. D. Microbial engineering for the production of advanced biofuels. Nature 488, 320–328 (2012).

    CAS  PubMed  Google Scholar 

  88. 88.

    Fairley, P. Introduction: Next generation biofuels. Nature 474, S2–5 (2011).

    CAS  PubMed  Google Scholar 

  89. 89.

    Xu, P. et al. Modular optimization of multi-gene pathways for fatty acids production in E. coli. Nat. Commun. 4, 1409 (2013).

    PubMed  Google Scholar 

  90. 90.

    Gajewski, J., Pavlovic, R., Fischer, M., Boles, E. & Grininger, M. Engineering fungal de novo fatty acid synthesis for short chain fatty acid production. Nat. Commun. 8, 14650 (2017).

    PubMed  PubMed Central  Google Scholar 

  91. 91.

    Liao, J. C., Mi, L., Pontrelli, S. & Luo, S. Fuelling the future: microbial engineering for the production of sustainable biofuels. Nat. Rev. Microbiol. 14, 288–304 (2016).

    CAS  PubMed  Google Scholar 

  92. 92.

    Dellomonaco, C., Clomburg, J. M., Miller, E. N. & Gonzalez, R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature 476, 355–359 (2011).

    CAS  PubMed  Google Scholar 

  93. 93.

    Sheppard, M. J., Kunjapur, A. M. & Prather, K. L. J. Modular and selective biosynthesis of gasoline-range alkanes. Metab. Eng. 33, 28–40 (2016).

    CAS  PubMed  Google Scholar 

  94. 94.

    Choi, Y. J. & Lee, S. Y. Microbial production of short-chain alkanes. Nature 502, 571–574 (2013).

    CAS  PubMed  Google Scholar 

  95. 95.

    Cheon, S., Kim, H. M., Gustavsson, M. & Lee, S. Y. Recent trends in metabolic engineering of microorganisms for the production of advanced biofuels. Curr. Opin. Chem. Biol. 35, 10–21 (2016).

    CAS  PubMed  Google Scholar 

  96. 96.

    Cao, Y. X. et al. Heterologous biosynthesis and manipulation of alkanes in Escherichia coli. Metab. Eng. 38, 19–28 (2016).

    CAS  PubMed  Google Scholar 

  97. 97.

    d’Espaux, L. et al. Engineering high-level production of fatty alcohols by Saccharomyces cerevisiae from lignocellulosic feedstocks. Metab. Eng. 42, 115–125 (2017).

    PubMed  Google Scholar 

  98. 98.

    Rodriguez, G. M., Tashiro, Y. & Atsumi, S. Expanding ester biosynthesis in Escherichia coli. Nat. Chem. Biol. 10, 259–265 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. 99.

    Qiao, K., Wasylenko, T. M., Zhou, K., Xu, P. & Stephanopoulos, G. Lipid production in Yarrowia lipolytica is maximized by engineering cytosolic redox metabolism. Nat. Biotechnol. 35, 173–177 (2017).

    CAS  PubMed  Google Scholar 

  100. 100.

    Xu, P., Qiao, K., Ahn, W. S. & Stephanopoulos, G. Engineering Yarrowia lipolytica as a platform for synthesis of drop-in transportation fuels and oleochemicals. Proc. Natl Acad. Sci. USA 113, 10848–10853 (2016).

    CAS  PubMed  Google Scholar 

  101. 101.

    Zhang, F., Carothers, J. M. & Keasling, J. D. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat. Biotechnol. 30, 354–359 (2012).

    CAS  PubMed  Google Scholar 

  102. 102.

    Zhou, Y. J., Buijs, N. A., Siewers, V. & Nielsen, J. Fatty acid-derived biofuels and chemicals production in Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 2, 32 (2014).

    PubMed  PubMed Central  Google Scholar 

  103. 103.

    Zhou, Y. J. et al. Production of fatty acid-derived oleochemicals and biofuels by synthetic yeast cell factories. Nat. Commun. 7, 11709 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104.

    Kurosawa, K., Boccazzi, P., de Almeida, N. M. & Sinskey, A. J. High-cell-density batch fermentation of Rhodococcus opacus PD630 using a high glucose concentration for triacylglycerol production. J. Biotechnol. 147, 212–218 (2010).

    CAS  PubMed  Google Scholar 

  105. 105.

    Li, Y., Zhao, Z. & Bai, F. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme Microb. Technol. 41, 312–317 (2007).

    Google Scholar 

  106. 106.

    Levering, J., Broddrick, J. & Zengler, K. Engineering of oleaginous organisms for lipid production. Curr. Opin. Biotechnol. 36, 32–39 (2015).

    CAS  PubMed  Google Scholar 

  107. 107.

    Ajjawi, I. et al. Lipid production in Nannochloropsis gaditana is doubled by decreasing expression of a single transcriptional regulator. Nat. Biotechnol. 35, 647–652 (2017).

    CAS  PubMed  Google Scholar 

  108. 108.

    Daboussi, F. et al. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat. Commun. 5, 3831 (2014).

    CAS  PubMed  Google Scholar 

  109. 109.

    Miao, S., Wang, P., Su, Z. & Zhang, S. Vegetable-oil-based polymers as future polymeric biomaterials. Acta Biomater. 10, 1692–1704 (2014).

    CAS  PubMed  Google Scholar 

  110. 110.

    Zhu, Y., Romain, C. & Williams, C. K. Sustainable polymers from renewable resources. Nature 540, 354–362 (2016).

    CAS  PubMed  Google Scholar 

  111. 111.

    Park, S. Y., Yang, D., Ha, S. H. & Lee, S. Y. Metabolic engineering of microorganisms for the production of natural compounds. Adv. Biosys. 2, 1700190 (2018).

    Google Scholar 

  112. 112.

    Whited, G. M. et al. Development of a gas-phase bioprocess for isoprene-monomer production using metabolic pathway engineering. Ind. Biotechnol. 6, 152–163 (2010).

    CAS  Google Scholar 

  113. 113.

    Yang, J. et al. Metabolic engineering of Escherichia coli for the biosynthesis of alpha-pinene. Biotechnol. Biofuels 6, 60 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114.

    Sarria, S., Wong, B., Garcia Martin, H., Keasling, J. D. & Peralta-Yahya, P. Microbial synthesis of pinene. ACS Synth. Biol. 3, 466–475 (2014).

    CAS  PubMed  Google Scholar 

  115. 115.

    Meadows, A. L. et al. Rewriting yeast central carbon metabolism for industrial isoprenoid production. Nature 537, 694–697 (2016).

    CAS  PubMed  Google Scholar 

  116. 116.

    Ozaydin, B., Burd, H., Lee, T. S. & Keasling, J. D. Carotenoid-based phenotypic screen of the yeast deletion collection reveals new genes with roles in isoprenoid production. Metab. Eng. 15, 174–183 (2013).

    CAS  PubMed  Google Scholar 

  117. 117.

    Kim, H. U., Charusanti, P., Lee, S. Y. & Weber, T. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites. Nat. Prod. Rep. 33, 933–941 (2016).

    CAS  PubMed  Google Scholar 

  118. 118.

    Curran, S. C. et al. Probing the flexibility of an iterative modular polyketide synthase with non-native substrates in vitro. ACS Chem. Biol. 13, 2261–2268 (2018).

    CAS  PubMed  Google Scholar 

  119. 119.

    Liu, Q. et al. Engineering an iterative polyketide pathway in Escherichia coli results in single-form alkene and alkane overproduction. Metab. Eng. 28, 82–90 (2015).

    CAS  PubMed  Google Scholar 

  120. 120.

    Yuzawa, S. et al. Comprehensive in vitro analysis of acyltransferase domain exchanges in modular polyketide synthases and its application for short-chain ketone production. ACS Synth. Biol. 6, 139–147 (2017).

    CAS  PubMed  Google Scholar 

  121. 121.

    Hagen, A. et al. Engineering a polyketide synthase for in vitro production of adipic acid. ACS Synth. Biol. 5, 21–27 (2016).

    CAS  PubMed  Google Scholar 

  122. 122.

    Yuzawa, S., Keasling, J. D. & Katz, L. Insights into polyketide biosynthesis gained from repurposing antibiotic-producing polyketide synthases to produce fuels and chemicals. J. Antibiot. 69, 494–499 (2016).

    CAS  PubMed  Google Scholar 

  123. 123.

    Averesch, N. J. H. & Kromer, J. O. Metabolic engineering of the shikimate pathway for production of aromatics and derived compounds-Present and future strain construction strategies. Front. Bioeng. Biotechnol. 6, 32 (2018).

    PubMed  PubMed Central  Google Scholar 

  124. 124.

    Fischer-Romero, C., Tindall, B. J. & Juttner, F. Tolumonas auensis gen. nov., sp. nov., a toluene-producing bacterium from anoxic sediments of a freshwater lake. Int. J. Syst. Bacteriol. 46, 183–188 (1996).

    CAS  PubMed  Google Scholar 

  125. 125.

    Kim, B., Park, H., Na, D. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of phenol from glucose. Biotechnol. J. 9, 621–629 (2014).

    CAS  PubMed  Google Scholar 

  126. 126.

    Balderas-Hernandez, V. E. et al. Metabolic engineering for improving anthranilate synthesis from glucose in Escherichia coli. Microb. Cell Fact. 8, 19 (2009).

    PubMed  PubMed Central  Google Scholar 

  127. 127.

    Balderas-Hernandez, V. E. et al. Catechol biosynthesis from glucose in Escherichia coli anthranilate-overproducer strains by heterologous expression of anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1. Microb. Cell Fact. 13, 136 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. 128.

    Kim, B., Binkley, R., Kim, H. U. & Lee, S. Y. Metabolic engineering of Escherichia coli for the enhanced production of l-tyrosine. Biotechnol. Bioeng. 115, 2554–2564 (2018).

    CAS  PubMed  Google Scholar 

  129. 129.

    Miao, L., Li, Q., Diao, A., Zhang, X. & Ma, Y. Construction of a novel phenol synthetic pathway in Escherichia coli through 4-hydroxybenzoate decarboxylation. Appl. Microbiol. Biotechnol. 99, 5163–5173 (2015).

    CAS  PubMed  Google Scholar 

  130. 130.

    Li, M. et al. De novo production of resveratrol from glucose or ethanol by engineered Saccharomyces cerevisiae. Metab. Eng. 32, 1–11 (2015).

    PubMed  Google Scholar 

  131. 131.

    Li, M., Schneider, K., Kristensen, M., Borodina, I. & Nielsen, J. Engineering yeast for high-level production of stilbenoid antioxidants. Sci. Rep. 6, 36827 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132.

    Yang, J. E. et al. One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat. Commun. 9, 79 (2018).

    PubMed  PubMed Central  Google Scholar 

  133. 133.

    Sano, C. History of glutamate production. Am. J. Clin. Nutr. 90, 728S–732S (2009).

    CAS  PubMed  Google Scholar 

  134. 134.

    Shimizu, H. & Hirasawa, T. in Amino Acid Biosynthesis: Pathways, Regulation and Metabolic Engineering (ed. Wendisch, V. F.) 1–38 (Springer, Heidelberg, 2007).

  135. 135.

    Park, S. H. et al. Metabolic engineering of Corynebacterium glutamicum for l-arginine production. Nat. Commun. 5, 4618 (2014).

    CAS  PubMed  Google Scholar 

  136. 136.

    Cho, J. S. et al. CRISPR/Cas9-coupled recombineering for metabolic engineering of Corynebacterium glutamicum. Metab. Eng. 42, 157–167 (2017).

    CAS  PubMed  Google Scholar 

  137. 137.

    Kim, S. Y., Lee, J. & Lee, S. Y. Metabolic engineering of Corynebacterium glutamicum for the production of l-ornithine. Biotechnol. Bioeng. 112, 416–421 (2015).

    CAS  PubMed  Google Scholar 

  138. 138.

    Zelder, O. et al. Improved process for the production of gamma-aminobutyric acid (GABA). WO patent 2015/092599 A1 (2015).

  139. 139.

    Park, S. J. et al. Synthesis of nylon 4 from gamma-aminobutyrate (GABA) produced by recombinant Escherichia coli. Bioprocess Biosyst. Eng. 36, 885–892 (2013).

    CAS  PubMed  Google Scholar 

  140. 140.

    Chae, T. U., Ko, Y. S., Hwang, K. S. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of four-, five- and six-carbon lactams. Metab. Eng. 41, 82–91 (2017).

    CAS  PubMed  Google Scholar 

  141. 141.

    Zhang, J. et al. Metabolic engineering of Escherichia coli for the biosynthesis of 2-pyrrolidone. Metab. Eng. Commun. 3, 1–7 (2016).

    PubMed  Google Scholar 

  142. 142.

    Kinoshita, S., Nakayama, K. & Udaka, S. The fermentative production of l-ornithine preliminary report. J. Gen. Appl. Microbiol. 3, 276–277 (1957).

    CAS  Google Scholar 

  143. 143.

    Qian, Z. G., Xia, X. X. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of putrescine: a four carbon diamine. Biotechnol. Bioeng. 104, 651–662 (2009).

    CAS  PubMed  Google Scholar 

  144. 144.

    Na, D. et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31, 170–174 (2013).

    CAS  PubMed  Google Scholar 

  145. 145.

    Noh, M., Yoo, S. M., Kim, W. J. & Lee, S. Y. Gene expression knockdown by modulating synthetic small RNA expression in Escherichia coli. Cell Syst. 5, 418–426 (2017). e414.

    CAS  PubMed  Google Scholar 

  146. 146.

    Guettler, M. V., Jain, M. K. & Rumler, D. Method for making succinic acid, bacterial variants for use in the process, and methods for obtaining variants. US patent 5573931 A (1996).

  147. 147.

    Lee, P. C., Lee, W. G., Lee, S. Y. & Chang, H. N. Succinic acid production with reduced by-product formation in the fermentation of Anaerobiospirillum succiniciproducens using glycerol as a carbon source. Biotechnol. Bioeng. 72, 41–48 (2001).

    CAS  PubMed  Google Scholar 

  148. 148.

    Okino, S. et al. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl. Microbiol. Biotechnol. 81, 459–464 (2008).

    CAS  PubMed  Google Scholar 

  149. 149.

    Lee, J. W. et al. Homo-succinic acid production by metabolically engineered Mannheimia succiniciproducens. Metab. Eng. 38, 409–417 (2016).

    CAS  PubMed  Google Scholar 

  150. 150.

    Lange, A. et al. Bio-based succinate from sucrose: High-resolution 13C metabolic flux analysis and metabolic engineering of the rumen bacterium Basfia succiniciproducens. Metab. Eng. 44, 198–212 (2017).

    CAS  PubMed  Google Scholar 

  151. 151.

    Rush, B. J. & Fosmer, A. M. Methods for succinate production. US patent application US20140363862A1 (2014).

  152. 152.

    Raab, A. M., Gebhardt, G., Bolotina, N., Weuster-Botz, D. & Lang, C. Metabolic engineering of Saccharomyces cerevisiae for the biotechnological production of succinic acid. Metab. Eng. 12, 518–525 (2010).

    CAS  PubMed  Google Scholar 

  153. 153.

    Gao, C. et al. Robust succinic acid production from crude glycerol using engineered Yarrowia lipolytica. Biotechnol. Biofuels 9, 179 (2016).

    PubMed  PubMed Central  Google Scholar 

  154. 154.

    Ahn, J. H., Jang, Y. S. & Lee, S. Y. Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 42, 54–66 (2016).

    CAS  PubMed  Google Scholar 

  155. 155.

    Hong, U. G. et al. Hydrogenation of succinic acid to 1,4-butanediol over rhenium catalyst supported on copper-containing mesoporous carbon. J. Nanosci. Nanotechnol. 13, 7448–7453 (2013).

    CAS  PubMed  Google Scholar 

  156. 156.

    Hong, U. G. et al. Hydrogenation of succinic acid to tetrahydrofuran (THF) over rhenium catalyst supported on H2SO4-treated mesoporous carbon. Appl. Catal. A Gen. 415, 141–148 (2012).

    Google Scholar 

  157. 157.

    Hong, U. G., Hwang, S., Seo, J. G., Lee, J. & Song, I. K. Hydrogenation of succinic acid to γ-butyrolactone (GBL) over palladium catalyst supported on alumina xerogel: Effect of acid density of the catalyst. J. Ind. Eng. Chem. 17, 316–320 (2011).

    CAS  Google Scholar 

  158. 158.

    Werpy, T., Frye, J., J. G., Wang, Y. & Zacher, A. H. Methods of making pyrrolidones. US patent US 6706893 B2 (2004).

  159. 159.

    Burgard, A., Burk, M. J., Osterhout, R., Van Dien, S. & Yim, H. Development of a commercial scale process for production of 1,4-butanediol from sugar. Curr. Opin. Biotechnol. 42, 118–125 (2016).

    CAS  PubMed  Google Scholar 

  160. 160.

    Ling, L. B. & Ng, T. K. Fermentation process for carboxylic acids. US patent 4877731 A (1989).

  161. 161.

    Song, C. W., Kim, D. I., Choi, S., Jang, J. W. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of fumaric acid. Biotechnol. Bioeng. 110, 2025–2034 (2013).

    CAS  PubMed  Google Scholar 

  162. 162.

    Xu, G., Liu, L. & Chen, J. Reconstruction of cytosolic fumaric acid biosynthetic pathways in Saccharomyces cerevisiae. Microb. Cell Fact. 11, 24 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163.

    Li, N. et al. Engineering Escherichia coli for fumaric acid production from glycerol. Bioresour. Technol. 174, 81–87 (2014).

    CAS  PubMed  Google Scholar 

  164. 164.

    Battat, E., Peleg, Y., Bercovitz, A., Rokem, J. S. & Goldberg, I. Optimization of l-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol. Bioeng. 37, 1108–1116 (1991).

    CAS  PubMed  Google Scholar 

  165. 165.

    Zambanini, T. et al. Efficient malic acid production from glycerol with Ustilago trichophora TZ1. Biotechnol. Biofuels 9, 67 (2016).

    PubMed  PubMed Central  Google Scholar 

  166. 166.

    Zhang, X., Wang, X., Shanmugam, K. T. & Ingram, L. O. l-Malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77, 427–434 (2011).

    CAS  PubMed  Google Scholar 

  167. 167.

    Zelle, R. M. et al. Malic acid production by Saccharomyces cerevisiae: engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74, 2766–2777 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  168. 168.

    Moharregh-Khiabani, D., Linker, R. A., Gold, R. & Stangel, M. Fumaric acid and its esters: an emerging treatment for multiple sclerosis. Curr. Neuropharmacol. 7, 60–64 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  169. 169.

    Vert, M. Chemical routes to poly(beta-malic acid) and potential applications of this water-soluble bioresorbable poly(beta-hydroxy alkanoate). Polym. Degradation Stab. 59, 169–175 (1998).

    CAS  Google Scholar 

  170. 170.

    Li, X., Cai, Z., Li, Y. & Zhang, Y. Design and construction of a non-natural malate to 1,2,4-butanetriol pathway creates possibility to produce 1,2,4-butanetriol from glucose. Sci. Rep. 4, 5541 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. 171.

    Cheong, S., Clomburg, J. M. & Gonzalez, R. Energy- and carbon-efficient synthesis of functionalized small molecules in bacteria using non-decarboxylative Claisen condensation reactions. Nat. Biotechnol. 34, 556–561 (2016).

    CAS  PubMed  Google Scholar 

  172. 172.

    Zhao, M. et al. Metabolic engineering of Escherichia coli for producing adipic acid through the reverse adipate-degradation pathway. Metab. Eng. 47, 254–262 (2018).

    CAS  PubMed  Google Scholar 

  173. 173.

    Sato, S., Takahashi, R., Sodesawa, T. & Yamamoto, N. Dehydration of 1,4-butanediol into 3-buten-1-ol catalyzed by ceria. Catal. Commun. 5, 397–400 (2004).

    CAS  Google Scholar 

  174. 174.

    Hunter, S. E., Ehrenberger, C. E. & Savage, P. E. Kinetics and mechanism of tetrahydrofuran synthesis via 1,4-butanediol dehydration in high-temperature water. J. Org. Chem. 71, 6229–6239 (2006).

    CAS  PubMed  Google Scholar 

  175. 175.

    Zhao, J. & Hartwig, J. F. Acceptorless, neat, ruthenium-catalyzed dehydrogenative cyclization of diols to lactones. Organometallics 24, 2441–2446 (2005).

    CAS  Google Scholar 

  176. 176.

    Subba Rao, Y. V., Kulkarni, S. J., Subrahmanyam, M. & Ramo Rao, A. V. Modified ZSM-5 catalysts for the synthesis of five- and six-membered heterocyclic compounds. J. Org. Chem. 59, 3998–4000 (1994).

    CAS  Google Scholar 

  177. 177.

    Clomburg, J. M. et al. Integrated engineering of beta-oxidation reversal and omega-oxidation pathways for the synthesis of medium chain omega-functionalized carboxylic acids. Metab. Eng. 28, 202–212 (2015).

    CAS  PubMed  Google Scholar 

  178. 178.

    Yu, J. L., Xia, X. X., Zhong, J. J. & Qian, Z. G. Direct biosynthesis of adipic acid from a synthetic pathway in recombinant Escherichia coli. Biotechnol. Bioeng. 111, 2580–2586 (2014).

    CAS  PubMed  Google Scholar 

  179. 179.

    Raj, K. et al. Biocatalytic production of adipic acid from glucose using engineered Saccharomyces cerevisiae. Metab. Eng. Commun. 6, 28–32 (2018).

    PubMed  PubMed Central  Google Scholar 

  180. 180.

    Choi, Y. J., Park, J. H., Kim, T. Y. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of 1-propanol. Metab. Eng. 14, 477–486 (2012).

    PubMed  Google Scholar 

  181. 181.

    Zhang, K., Sawaya, M. R., Eisenberg, D. S. & Liao, J. C. Expanding metabolism for biosynthesis of nonnatural alcohols. Proc. Natl Acad. Sci. USA 105, 20653–20658 (2008).

    CAS  PubMed  Google Scholar 

  182. 182.

    Song, C. W., Lee, J., Ko, Y. S. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of 3-aminopropionic acid. Metab. Eng. 30, 121–129 (2015).

    CAS  PubMed  Google Scholar 

  183. 183.

    Song, C. W., Kim, J. W., Cho, I. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of 3-hydroxypropionic acid and malonic acid through beta-alanine route. ACS Synth. Biol. 5, 1256–1263 (2016).

    CAS  PubMed  Google Scholar 

  184. 184.

    Chae, T. U., Kim, W. J., Choi, S., Park, S. J. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of 1,3-diaminopropane, a three carbon diamine. Sci. Rep. 5, 13040 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. 185.

    Mimitsuka, T., Sawai, H., Hatsu, M. & Yamada, K. Metabolic engineering of Corynebacterium glutamicum for cadaverine fermentation. Biosci. Biotechnol. Biochem. 71, 2130–2135 (2007).

    CAS  PubMed  Google Scholar 

  186. 186.

    Shin, J. H. et al. Metabolic engineering of Corynebacterium glutamicum for enhanced production of 5-aminovaleric acid. Microb. Cell Fact. 15, 174 (2016).

    PubMed  PubMed Central  Google Scholar 

  187. 187.

    Zhang, J. et al. Application of an acyl-CoA ligase from Streptomyces aizunensis for lactam biosynthesis. ACS Synth. Biol. 6, 884–890 (2017).

    CAS  PubMed  Google Scholar 

  188. 188.

    Cann, A. F. & Liao, J. C. Production of 2-methyl-1-butanol in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 81, 89–98 (2008).

    CAS  PubMed  Google Scholar 

  189. 189.

    Lepore, A. W. et al. Catalytic dehydration of biomass derived 1-propanol to propene over M-ZSM-5 (M = H, V, Cu, or Zn). Ind. Eng. Chem. Res. 56, 4302–4308 (2017).

    CAS  Google Scholar 

  190. 190.

    Borodina, I. et al. Establishing a synthetic pathway for high-level production of 3-hydroxypropionic acid in Saccharomyces cerevisiae via beta-alanine. Metab. Eng. 27, 57–64 (2015).

    CAS  PubMed  Google Scholar 

  191. 191.

    Park, S. J. et al. Metabolic engineering of Escherichia coli for the production of 5-aminovalerate and glutarate as C5 platform chemicals. Metab. Eng. 16, 42–47 (2013).

    CAS  PubMed  Google Scholar 

  192. 192.

    Adkins, J., Jordan, J. & Nielsen, D. R. Engineering Escherichia coli for renewable production of the 5-carbon polyamide building-blocks 5-aminovalerate and glutarate. Biotechnol. Bioeng. 110, 1726–1734 (2013).

    CAS  PubMed  Google Scholar 

  193. 193.

    Rohles, C. M., Giesselmann, G., Kohlstedt, M., Wittmann, C. & Becker, J. Systems metabolic engineering of Corynebacterium glutamicum for the production of the carbon-5 platform chemicals 5-aminovalerate and glutarate. Microb. Cell Fact. 15, 154 (2016).

    PubMed  PubMed Central  Google Scholar 

  194. 194.

    Joo, J. C. et al. Production of 5-aminovaleric acid in recombinant Corynebacterium glutamicum strains from a Miscanthus hydrolysate solution prepared by a newly developed Miscanthus hydrolysis process. Bioresour. Technol. 245, 1692–1700 (2017).

    CAS  PubMed  Google Scholar 

  195. 195.

    Rohles, C. M. et al. A bio-based route to the carbon-5 chemical glutaric acid and to bionylon-6,5 using metabolically engineered Corynebacterium glutamicum. Green Chem. 20, 4662–4674 (2018).

    CAS  Google Scholar 

  196. 196.

    Qian, Z. G., Xia, X. X. & Lee, S. Y. Metabolic engineering of Escherichia coli for the production of cadaverine: a five carbon diamine. Biotechnol. Bioeng. 108, 93–103 (2011).

    CAS  PubMed  Google Scholar 

  197. 197.

    Buschke, N. et al. Systems metabolic engineering of xylose-utilizing Corynebacterium glutamicum for production of 1,5-diaminopentane. Biotechnol. J. 8, 557–570 (2013).

    CAS  PubMed  Google Scholar 

  198. 198.

    Kim, H. T. et al. Metabolic engineering of Corynebacterium glutamicum for the high-level production of cadaverine that can be used for the synthesis of biopolyamide 510. ACS Sustain. Chem. Eng. 6, 5296–5305 (2018).

    CAS  Google Scholar 

  199. 199.

    Pronk, J. T. et al. How to set up collaborations between academia and industrial biotech companies. Nat. Biotechnol. 33, 237–240 (2015).

    CAS  PubMed  Google Scholar 

  200. 200.

    Segler, M. H. S., Preuss, M. & Waller, M. P. Planning chemical syntheses with deep neural networks and symbolic AI. Nature 555, 604–610 (2018).

    CAS  PubMed  Google Scholar 

  201. 201.

    Kim, W. J., Kim, H. U. & Lee, S. Y. Current state and applications of microbial genome-scale metabolic models. Curr. Opin. Syst. Biol. 2, 9–17 (2017).

    Google Scholar 

  202. 202.

    Chen, Z., Wilmanns, M. & Zeng, A. P. Structural synthetic biotechnology: from molecular structure to predictable design for industrial strain development. Trends Biotechnol. 28, 534–542 (2010).

    CAS  PubMed  Google Scholar 

  203. 203.

    Durre, P. & Eikmanns, B. J. C1-carbon sources for chemical and fuel production by microbial gas fermentation. Curr. Opin. Biotechnol. 35, 63–72 (2015).

    PubMed  Google Scholar 

  204. 204.

    de Lorenzo, V. et al. The power of synthetic biology for bioproduction, remediation and pollution control: the UN’s Sustainable Development Goals will inevitably require the application of molecular biology and biotechnology on a global scale. EMBO Rep. 19, e45658 (2018).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Development Program to Solve Climate Changes on Systems Metabolic Engineering for Biorefineries (NRF-2012M1A2A2026556 and NRF-2012M1A2A2026557) from the Ministry of Science and ICT through the National Research Foundation of Korea.

Author information

Affiliations

Authors

Contributions

S.Y.L. conceived the project and designed the study. All authors analysed literature, compiled data, planned the content and wrote the manuscript.

Corresponding author

Correspondence to Sang Yup Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Data 1

Bio-based chemicals map in poster format

Supplementary Information

Supplementary Note 1–2, Supplementary Figure 1, Supplementary Tables 1–3, Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lee, S.Y., Kim, H.U., Chae, T.U. et al. A comprehensive metabolic map for production of bio-based chemicals. Nat Catal 2, 18–33 (2019). https://doi.org/10.1038/s41929-018-0212-4

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing