Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly tunable multi-borylation of gem-difluoroalkenes via copper catalysis


Multi-borylated compounds are useful starting materials for the construction of complex molecules. Although certain classes of multi-borylated compounds, such as geminal and 1,2-bis(boronates), can now be accessed selectively by several well-established methods, the synthesis of one class—those containing more than two boronate substituents—remains a great challenge. Here, copper catalytic systems were developed for the borylation of gem-difluoroalkenes with B2pin2 via dual C–F bond activation to afford multi-borylate libraries—1,2-alkyldiboronates, 1,1,2-alkyltriboronates and 1,1,1,2-alkyltetraboronates—by slightly tuning the reaction conditions. The advantages of this strategy include not only avoiding the use of different methods and substrates for each type of multi-substituted alkyl boronate, but also the excellent functional group compatibility, readily accessible gem-difluorovinyl group and highly chemoselective process.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Development of a highly tunable defluoroborylation protocol to selectively construct 1,2-alkyldiboronates, 1,1,2-alkyltriboronates and 1,1,1,2-alkyltetraboronates.
Fig. 2: Utility of the formed multi-borylation compounds.
Fig. 3: Investigation of gem-dibromoalkene, 15 and deuterium-labelling experiments.
Fig. 4: Detailed mechanistic studies on the intermediates of 5a and 6a.
Fig. 5: Proposed catalytic cycles of the present tunable multi-borylation.

Data availability

Crystallographic data for the structures 5f and 6f reported in this paper have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers 1855882 and 1855883. Copies of the data can be obtained free of charge via All other data supporting the findings of this study, including experimental procedures and compound characterization, are available within the paper and its Supplementary Information, or from the corresponding author upon reasonable request.


  1. 1.

    Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials Vol. 1–2 (Wiley, Weinheim, 2011).

  2. 2.

    Brooks, W. L. A. & Sumerlin, B. S. Synthesis and applications of boronic acid-containing polymers: from materials to medicine. Chem. Rev. 116, 1375–1397 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Trippier, P. C. & McGuigan, C. Boronic acids in medicinal chemistry: anticancer, antibacterial and antiviral applications. Med. Chem. Comm. 1, 183–198 (2010).

    CAS  Article  Google Scholar 

  4. 4.

    Draganov, A., Wang, D. & Wang, B. in Atypical Elements in Drug Design (ed. Schwarz, J.) 1–27 (Springer, Basel, 2014).

  5. 5.

    Smoum, R., Rubinstein, A., Dembitsky, V. M. & Srebnik, M. Boron containing compounds as protease inhibitors. Chem. Rev. 112, 4156–4220 (2012).

    CAS  Article  Google Scholar 

  6. 6.

    Miyaura, N. & Yamamoto, Y. in Comprehensive Organometallic Chemistry III Vol. 9 (eds Crabtree, R. H. & Mingos, D. M. P.) Ch. 5 (Elsevier, New York, 2007).

  7. 7.

    Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    Brown, H. C. Hydroboration (Benjamin/Cummings, San Francisco, 1980).

  9. 9.

    Crudden, C. M. & Edwards, D. Catalytic asymmetric hydroboration: recent advances and applications in carbon–carbon bond-forming reactions. Eur. J. Org. Chem. 2003 4695–4712 (2003).

    Article  Google Scholar 

  10. 10.

    Xu, L., Zhang, S. & Li, P. Boron-selective reactions as powerful tools for modular synthesis of diverse complex molecules. Chem. Soc. Rev. 44, 8848–8858 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    Neeve, E. C., Geier, S. J., Mkhalid, I. A. I., Westcott, S. A. & Marder., T. B. Diboron(4) compounds: from structural curiosity to synthetic workhorse. Chem. Rev. 116, 9091–9161 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Issaian, A., Tu, K. N. & Blum, S. A. Boron–heteroatom addition reactions via borylative heterocyclization: oxyboration, aminoboration, and thioboration. Acc. Chem. Res. 50, 2598–2609 (2017).

    CAS  Article  Google Scholar 

  13. 13.

    Endo, K., Ohkubo, T., Hirokami, M. & Shibata, T. Chemoselective and regiospecific Suzuki coupling on a multisubstituted sp3-carbon in 1,1-diborylalkanes at room temperature. J. Am. Chem. Soc. 132, 11033–11035 (2010).

    CAS  Article  Google Scholar 

  14. 14.

    Zhang, Z.-Q. et al. Copper-catalyzed/promoted cross-coupling of gem-diborylalkanes with nonactivated primary alkyl halides: an alternative route to alkylboronic esters. Org. Lett. 16, 6342–6345 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Sun, C., Potter, B. & Morken, J. P. A catalytic enantiotopic-group-selective Suzuki reaction for the construction of chiral organoboronates. J. Am. Chem. Soc. 136, 6534–6537 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Bose, S. K. et al. Highly efficient synthesis of alkylboronate esters via Cu(ii)-catalysed borylation of unactivated alkyl bromides and chlorides in air. ACS Catal. 6, 8332–8335 (2016).

    CAS  Article  Google Scholar 

  17. 17.

    Jo, W., Kim, J., Choi, S. & Cho, S. H. Transition-metal-free regioselective alkylation of pyridine N-oxides using 1,1-diborylalkanes as alkylating reagents. Angew. Chem. Int. Ed. 55, 9690–9694 (2016).

    CAS  Article  Google Scholar 

  18. 18.

    Miralles, N., Gómez, J. E., Kleij, A. W. & Fernández, E. Copper-mediated SN2′ allyl–alkyl and allyl–boryl couplings of vinyl cyclic carbonates. Org. Lett. 19, 6096–6099 (2017).

    CAS  Article  Google Scholar 

  19. 19.

    Toribatake, K. & Nishiyama, H. Asymmetric diboration of terminal alkenes with a rhodium catalyst and subsequent oxidation: enantioselective synthesis of optically active 1,2-diols. Angew. Chem. Int. Ed. 52, 11011–11015 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Mlynarski, S. N., Schuster, C. H. & Morken, J. P. Asymmetric synthesis from terminal alkenes by cascades of diboration and cross-coupling. Nature 505, 386–390 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Blaisdell, T. P., Caya, T. C., Zhang, L., Sanz-Marco, A. & Morken, J. P. Hydroxyl-directed stereoselective diboration of alkenes. J. Am. Chem. Soc. 136, 9264–9267 (2014).

    CAS  Article  Google Scholar 

  22. 22.

    Crudden, C. M. et al. Iterative protecting group-free cross-coupling leading to chiral multiply arylated structures. Nat. Commun. 7, 11065–11071 (2016).

    Article  Google Scholar 

  23. 23.

    Fang, L., Yan, L., Haeffner, F. & Morken, J. P. Carbohydrate-catalysed enantioselective alkene diboration: enhanced reactivity of 1,2-bonded diboron complexes. J. Am. Chem. Soc. 138, 2508–2511 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Fawcett, A. et al. Regio- and stereoselective homologation of 1,2-bis(boronic esters): stereocontrolled synthesis of 1,3-diols and Sch 725674. Angew. Chem. Int. Ed. 55, 14883–14887 (2016).

    Article  Google Scholar 

  25. 25.

    Marder, T. B. & Norman, N. C. Transition metal catalysed diboration. Top. Catal. 5, 63–73 (1998).

    CAS  Article  Google Scholar 

  26. 26.

    Ramirez, J., Lillo, V., Segarra, A. M. & Fernández, E. Catalytic asymmetric boron–boron addition to unsaturated molecules. C. R. Chim. 10, 138–151 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Burks, H. E. & Morken, J. P. Catalytic enantioselective diboration, disilation and silaboration: new opportunities for asymmetric synthesis. Chem. Commun. 2007, 4717–4725 (2007).

  28. 28.

    Takaya, J. & Iwasawa, N. Catalytic, direct synthesis of bis(boronate) compounds. ACS Catal. 2, 1993–2006 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Cuenca, A. B., Shishido, R., Ito, H. & Fernández, E. Transition-metal-free B–B and B–interelement reactions with organic molecules. Chem. Soc. Rev. 46, 415–430 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Nallagonda, R., Padalaa, K. & Masarwa, A. gem-Diborylalkanes: recent advances in their preparation, transformation and application. Org. Biomol. Chem. 16, 1050–1064 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Miralles, N., Maza, R. J. & Fernándeza, E. Synthesis and reactivity of 1,1-diborylalkanes towards C–C bond formation and related mechanisms. Adv. Synth. Catal. 360, 1306–1327 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Gu, Y., Pritzkow, H. & Siebert, W. Synthesis and reactivity of monoborylacetylene derivatives. Eur. J. Inorg. Chem. 2001, 373–379 (2001).

    Article  Google Scholar 

  33. 33.

    Baker, R. T., Nguyen, P., Marder, T. B. & Westcott, S. A. Transition metal catalysed diboration of vinylarenes. Angew. Chem. Int. Ed. 34, 1336–1338 (1995).

    CAS  Article  Google Scholar 

  34. 34.

    Nguyen, P. et al. Rhodium(i) catalysed diboration of (E)-styrylboronate esters: molecular structures of (E)-p-MeO–C6H4–CH:CH–B(1,2-O2C6H4) and p-MeO–C6H4–CH2C{B(1,2-O2C6H4)}3. J. Organomet. Chem. 652, 77–85 (2002).

    CAS  Article  Google Scholar 

  35. 35.

    Huang, Z. & Zhang, L. Synthesis of 1,1,1-tris(boronates) from vinylarenes by co-catalyzed dehydrogenative borylations–hydroboration. J. Am. Chem. Soc. 137, 15600–15603 (2015).

    Article  Google Scholar 

  36. 36.

    Shimada, S., Batsanov, A. S., Howard, J. A. K. & Marder, T. B. Formation of aryl- and benzylboronate esters by rhodium-catalyzed C–H bond functionalization with pinacolborane. Angew. Chem. Int. Ed. 40, 2168–2171 (2001).

    CAS  Article  Google Scholar 

  37. 37.

    Cho, J. Y. et al. Remarkably selective iridium catalysts for the elaboration of aromatic C–H bonds. Science 295, 305–308 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    Hartwig, J. F. Regioselectivity of the borylation of alkanes and arenes. Chem. Soc. Rev. 40, 1992–2002 (2011).

    CAS  Article  Google Scholar 

  39. 39.

    Hartwig, J. F. Borylation and silylation of C–H bonds: a platform for diverse C–H bond functionalizations. Acc. Chem. Res. 45, 864–873 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Bose, S. K. & Marder, T. B. A leap forward in C–H functionalization. Science 349, 473–474 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Mita, T., Ikeda, Y., Michigami, K. & Sato, Y. Iridium-catalysed triple C(sp3)–H borylations: construction of triborylated sp3-carbon centers. Chem. Commun. 49, 5601–5603 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Palmer, W. N., Obligacion, J. V., Pappas, I. & Chirik, P. J. Cobalt-catalysed benzylic borylation: enabling polyborylation and functionalization of remote, unactivated C(sp3)–H bonds. J. Am. Chem. Soc. 138, 766–769 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Krautwald, S., Bezdek, M. J. & Chirik, P. J. Cobalt-catalyzed 1,1-diboration of terminal alkynes: scope, mechanism and synthetic applications. J. Am. Chem. Soc. 139, 3868–3875 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    Coombs, J. R., Zhang, L. & Morken, J. P. Enantiomerically enriched tris(boronates): readily accessible conjunctive reagents for asymmetric synthesis. J. Am. Chem. Soc. 136, 16140–16143 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    Gao, G., Yan, J., Yang, K., Chen, F. & Song, Q. Base-controlled highly selective synthesis of alkyl 1,2-bis(boronates) or 1,1,2-tris(boronates) from terminal alkynes. Green Chem. 19, 3997–4001 (2017).

    CAS  Article  Google Scholar 

  46. 46.

    Castle, R. B. & Matteson, D. S. Methanetetraboroni and methanetriboronic esters. J. Organometal. Chem. 20, 19–28 (1969).

    CAS  Article  Google Scholar 

  47. 47.

    Matteson, D. S. Methanetetraboronic and methanetriboronic esters as synthetic intermediates. Synthesis 1975, 147–158 (1975).

    Article  Google Scholar 

  48. 48.

    Batsanov, A. S. et al. Fully borylated methane and ethane by ruthenium-mediated cleavage and coupling of CO. Angew. Chem. Int. Ed. 55, 4707–4710 (2016).

    CAS  Article  Google Scholar 

  49. 49.

    Liu, X.-W., Echavarren, J., Zarate, C. & Martin, R. Ni-catalyzed borylation of aryl fluorides via C–F cleavage. J. Am. Chem. Soc. 137, 12470–12473 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Niwa, T., Ochiai, H., Watanabe, Y. & Hosoya, T. Ni/Cu-catalyzed defluoroborylation of fluoroarenes for diverse C–F bond functionalizations. J. Am. Chem. Soc. 137, 14313–14318 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Zhou, J. et al. Preparing (multi)fluoroarenes as building blocks for synthesis: nickel-catalyzed borylation of polyfluoroarenes via C–F bond cleavage. J. Am. Chem. Soc. 138, 5250–5253 (2016).

    CAS  Article  Google Scholar 

  52. 52.

    Zhang, J., Dai, W., Liu, Q. & Cao, S. Cu-catalyzed stereoselective borylation of gem-difluoroalkenes with B2pin2. Org. Lett. 19, 3283–3286 (2017).

    CAS  Article  Google Scholar 

  53. 53.

    Sakaguchi, H. et al. Copper-catalyzed regioselective monodefluoroborylation of polyfluoroalkenes en route to diverse fluoroalkenes. J. Am. Chem. Soc. 139, 12855–12862 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Tan, D.-H. et al. Copper-catalyzed stereoselective defluorinative borylation and silylation of gem-difluoroalkenes. Adv. Synth. Catal. 360, 1032–1037 (2010).

    Article  Google Scholar 

  55. 55.

    Takachi, M., Kita, Y., Tobisu, M., Fukumoto, Y. & Chatani, N. Nickel-catalyzed cyclization of difluoro-substituted 1,6-enynes with organozinc reagents through the stereoselective activation of C–F bonds: synthesis of bicyclo[3.2.0]heptene derivatives. Angew. Chem. Int. Ed. 49, 8717–8720 (2010).

    CAS  Article  Google Scholar 

  56. 56.

    Gao, B., Zhao, Y. & Hu, J. AgF-mediated fluorinative cross-coupling of two olefins: facile access to α-CF3 alkenes and β-CF3 ketones. Angew. Chem. Int. Ed. 54, 638–642 (2015).

    CAS  Google Scholar 

  57. 57.

    Tian, P., Feng, C. & Loh, T.-P. Rhodium-catalysed C(sp 2)–C(sp 2) bond formation via C–H/C–F activation. Nat. Commun. 6, 7472–7478 (2015).

  58. 58.

    Xie, J., Yu, J., Rudolph, M., Rominger, F. & Hashmi, A. S. K. Mono-fluoroalkenylation of dimethylamino compounds through radical–radical cross-coupling. Angew. Chem. Int. Ed. 55, 9416–9421 (2016).

    CAS  Article  Google Scholar 

  59. 59.

    Tian, P. et al. F nucleophilic-addition-induced allylic alkylation. J. Am. Chem. Soc. 138, 15869–15872 (2016).

    CAS  Article  Google Scholar 

  60. 60.

    Thornbury, R. T. & Toste, F. D. Palladium-catalyzed defluorinative coupling of 1-aryl-2,2-difluoroalkenes and boronic acids: stereoselective synthesis of monofluorostilbenes. Angew. Chem. Int. Ed. 55, 11629–11632 (2016).

    CAS  Article  Google Scholar 

  61. 61.

    Tang, H.-J., Lin, L.-Z., Feng, C. & Loh, T.-P. Palladium-catalyzed fluoroarylation of gem-difluoroalkenes. Angew. Chem. Int. Ed. 56, 9872–9876 (2017).

    CAS  Article  Google Scholar 

  62. 62.

    Wu, J.-Q. et al. Experimental and theoretical studies on rhodium-catalyzed coupling of benzamides with 2,2-difluorovinyl tosylate: diverse synthesis of fluorinated heterocycles. J. Am. Chem. Soc. 139, 3537–3545 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Lu, X. et al. Nickel-catalyzed defluorinative reductive cross-coupling of gem-difluoroalkenes with unactivated secondary and tertiary alkyl halides. J. Am. Chem. Soc. 139, 12632–12637 (2017).

    CAS  Article  Google Scholar 

  64. 64.

    Liu, Y., Zhou, Y., Zhao, Y. & Qu, J. Synthesis of gem-difluoroallylboronates via FeCl2‑catalyzed boration/β-fluorine elimination of trifluoromethyl alkenes. Org. Lett. 19, 946–949 (2017).

    CAS  Article  Google Scholar 

  65. 65.

    Hu, J., Han, X., Yuan, Y. & Shi, Z. Stereoselective synthesis of Z fluoroalkenes through copper-catalyzed hydrodefluorination of gem-difluoroalkenes with water. Angew. Chem. Int. Ed. 56, 13342–13346 (2017).

    CAS  Article  Google Scholar 

  66. 66.

    Kojima, R., Kubota, K. & Ito, H. Stereodivergent hydrodefluorination of gem-difluoroalkenes: selective synthesis of (Z)- and (E)-monofluoroalkenes. Chem. Commun. 53, 10688–10691 (2017).

    CAS  Article  Google Scholar 

  67. 67.

    Hong, K., Liu, X. & Morken, J. P. Simple access to elusive α-boryl carbanions and their alkylation: an umpolung construction for organic synthesis. J. Am. Chem. Soc. 136, 10581–10584 (2014).

    CAS  Article  Google Scholar 

Download references


We thank A. Lei at Wuhan University for assistance with the operando infrared experiments. This work was supported by the Funding Programs for the ‘1000 Youth Talents Plan’, National Natural Science Foundation of China (grant 2167020084), ‘Jiangsu Specially-Appointed Professor Plan’ and ‘Innovation and Entrepreneurship Talents Plan’ of Jiangsu Province.

Author information




Z.S. conceived the study, supervised the project and wrote the paper. J.H performed the experiments and mechanism study, and analysed the data. Y.Z. performed the crystallographic studies.

Corresponding author

Correspondence to Zhuangzhi Shi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Information

Supplementary Methods, Supplementary References, Supplementary Figures 1–108

Compound 5f

Crystallographic data for compound 5f

Compound 6f

Crystallographic data for compound 6f

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhao, Y. & Shi, Z. Highly tunable multi-borylation of gem-difluoroalkenes via copper catalysis. Nat Catal 1, 860–869 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing