Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction

Abstract

Efficient catalysts for the anodic oxygen evolution reaction (OER) are critical for electrochemical H2 production. Their design requires structural knowledge of their catalytically active sites and state. Here, we track the atomic-scale structural evolution of well-defined CoOx(OH)y compounds into their catalytically active state during electrocatalytic operation through operando and surface-sensitive X-ray spectroscopy and surface voltammetry, supported by theoretical calculations. We find clear voltammetric evidence that electrochemically reducible near-surface Co3+–O sites play an organizing role for high OER activity. These sites invariably emerge independent of initial metal valency and coordination under catalytic OER conditions. Combining experiments and theory reveals the unified chemical structure motif as µ2-OH-bridged Co2+/3+ ion clusters formed on all three-dimensional cross-linked and layered CoOx(OH)y precursors and present in an oxidized form during the OER, as shown by operando X-ray spectroscopy. Together, the spectroscopic and electrochemical fingerprints offer a unified picture of our molecular understanding of the structure of catalytically active metal oxide OER sites.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Possible mechanisms of O–O bond formation.
Fig. 2: Structures of the selected cobalt oxides and cobalt oxyhydroxides.
Fig. 3: Morphological and structural integrity of CoOx(OH)y electrocatalysts.
Fig. 4: Ex situ and operando cobalt oxidation states at selected catalyst states.
Fig. 5: Ex situ and operando structural characterization at selected catalyst states.
Fig. 6: Near-surface oxygen chemistry in CoOx(OH)y before and after OER conditioning.
Fig. 7: Redox electrochemistry and OER catalytic activity of CoOx(OH)y in a neutral electrolyte.
Fig. 8: Correlation of near-surface chemistry with electrochemical reducibility and catalytic activity.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kupitz, C. et al. Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513, 261–265 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Dau, H., Zaharieva, I. & Haumann, M. Recent developments in research on water oxidation by photosystem II. Curr. Opin. Chem. Biol. 16, 3–10 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Haumann, M. et al. Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation cycle (S0 → S1, S1 → S2, S2 → S3, and S3,4 → S0) characterized by X-ray absorption spectroscopy at 20 K and room temperature. Biochemistry 44, 1894–1908 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. Zaharieva, I. et al. Water oxidation catalysis—role of redox and structural dynamics in biological photosynthesis and inorganic manganese oxides. Energy Environ. Sci. 9, 2433–2443 (2016).

    Article  CAS  Google Scholar 

  7. Bergmann, A., Zaharieva, I., Dau, H. & Strasser, P. Electrochemical water splitting by layered and 3D cross-linked manganese oxides: correlating structural motifs and catalytic activity. Energy Environ. Sci. 6, 2745–2755 (2013).

    Article  CAS  Google Scholar 

  8. Hocking, R. K. et al. Water-oxidation catalysis by manganese in a geochemical-like cycle. Nat. Chem. 3, 461–466 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Jiao, F. & Frei, H. Nanostructured manganese oxide clusters supported on mesoporous silica as efficient oxygen-evolving catalysts. Chem. Commun. 46, 2920–2922 (2010).

    Article  CAS  Google Scholar 

  10. Bergmann, A. et al. Reversible amorphization and the catalytically active state of crystalline Co3O4 during oxygen evolution. Nat. Commun. 6, 8625 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Dionigi, F. & Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 6, 1600621 (2016).

    Article  CAS  Google Scholar 

  12. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    Article  CAS  Google Scholar 

  13. Dincâ, M., Surendranath, Y. & Nocera, D. G. Nickel–borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl Acad. Sci. USA 107, 10337–10341 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Burke, M. S., Kast, M. G., Trotochaud, L., Smith, A. M. & Boettcher, S. W. Cobalt–iron (oxy)hydroxide oxygen evolution electrocatalysts: the role of structure and composition on activity, stability, and mechanism. J. Am. Chem. Soc. 137, 3638–3648 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Trotochaud, L., Ranney, J. K., Williams, K. N. & Boettcher, S. W. Solution-cast metal oxide thin film electrocatalysts for oxygen evolution. J. Am. Chem. Soc. 134, 17253–17261 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Reier, T., Nong, H. N., Teschner, D., Schlögl, R. & Strasser, P. Electrocatalytic oxygen evolution reaction in acidic environments—reaction mechanisms and catalysts. Adv. Energy Mater. 7, 1601275 (2016).

    Article  CAS  Google Scholar 

  17. Zhang, M., de Respinis, M. & Frei, H. Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nat. Chem. 6, 362–367 (2014).

    Article  CAS  PubMed  Google Scholar 

  18. Bajdich, M., Garcia-Mota, M., Vojvodic, A., Norskov, J. K. & Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 135, 13521–13530 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Plaisance, C. P. & van Santen, R. A. Structure sensitivity of the oxygen evolution reaction catalyzed by cobalt(ii,iii) oxide. J. Am. Chem. Soc. 137, 14660–14672 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Koroidov, S., Anderlund, M. F., Styring, S., Thapper, A. & Messinger, J. First turnover analysis of water-oxidation catalyzed by Co-oxide nanoparticles. Energy Environ. Sci. 8, 2492–2503 (2015).

    Article  CAS  Google Scholar 

  21. Ullman, A. M., Brodsky, C. N., Li, N., Zheng, S.-L. & Nocera, D. G. Probing edge site reactivity of oxidic cobalt water oxidation catalysts. J. Am. Chem. Soc. 138, 4229–4236 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    Article  CAS  PubMed  Google Scholar 

  23. Fernando, A. & Aikens, C. M. Reaction pathways for water oxidation to molecular oxygen mediated by model cobalt oxide dimer and cubane catalysts. J. Phys. Chem. C 119, 11072–11085 (2015).

    Article  CAS  Google Scholar 

  24. Mattioli, G., Giannozzi, P., Amore Bonapasta, A. & Guidoni, L. Reaction pathways for oxygen evolution promoted by cobalt catalyst. J. Am. Chem. Soc. 135, 15353–15363 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tung, C.-W. et al. Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. Nat. Commun. 6, 8106 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. González-Flores, D. et al. Heterogeneous water oxidation: surface activity versus amorphization activation in cobalt phosphate catalysts. Angew. Chem. 127, 2502–2506 (2015).

    Article  Google Scholar 

  27. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. Risch, M. et al. Structural changes of cobalt-based perovskites upon water oxidation investigated by EXAFS. J. Phys. Chem. C 117, 8628–8635 (2013).

    Article  CAS  Google Scholar 

  29. May, K. J. et al. Influence of oxygen evolution during water oxidation on the surface of perovskite oxide catalysts. J. Phys. Chem. Lett. 3, 3264–3270 (2012).

    Article  CAS  Google Scholar 

  30. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  CAS  PubMed  Google Scholar 

  31. Risch, M. et al. Water oxidation by amorphous cobalt-based oxides: in situ tracking of redox transitions and mode of catalysis. Energy Environ. Sci. 8, 661–674 (2015).

    Article  CAS  Google Scholar 

  32. Seo, B. et al. Size-dependent activity trends combined with in situ X-ray absorption spectroscopy reveal insights into cobalt oxide/carbon nanotube-catalyzed bifunctional oxygen electrocatalysis. ACS Catal. 6, 4347–4355 (2016).

    Article  CAS  Google Scholar 

  33. Friebel, D. et al. On the chemical state of Co oxide electrocatalysts during alkaline water splitting. Phys. Chem. Chem. Phys. 15, 17460–17467 (2013).

    Article  CAS  PubMed  Google Scholar 

  34. Mizokawa, T. et al. Role of oxygen holes in LixCoO2 revealed by soft X-ray spectroscopy. Phys. Rev. Lett. 111, 056404 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. Van Elp, J. et al. Electronic structure of CoO, Li-doped CoO, and LiCoO2. Phys. Rev. B 44, 6090–6103 (1991).

    Article  CAS  Google Scholar 

  36. Pfeifer, V. et al. In situ observation of reactive oxygen species forming on oxygen-evolving iridium surfaces. Chem. Sci. 8, 2143–2149 (2017).

    Article  CAS  PubMed  Google Scholar 

  37. Mueller, D. N., Machala, M. L., Bluhm, H. & Chueh, W. C. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6, 6097 (2015).

    Article  CAS  PubMed  Google Scholar 

  38. Hong, W. T. et al. Tuning the spin state in LaCoO3 thin films for enhanced high-temperature oxygen electrocatalysis. J. Phys. Chem. Lett. 4, 2493–2499 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Han, B. et al. Role of LiCoO2 surface terminations in oxygen reduction and evolution kinetics. J. Phys. Chem. Lett. 6, 1357–1362 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. Luo, K. et al. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. Nat. Chem. 8, 684–691 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Du, P., Kokhan, O., Chapman, K. W., Chupas, P. J. & Tiede, D. M. Elucidating the domain structure of the cobalt oxide water splitting catalyst by X-ray pair distribution function analysis. J. Am. Chem. Soc. 134, 11096–11099 (2012).

    Article  CAS  PubMed  Google Scholar 

  43. Abbate, M. et al. Probing depth of soft X-ray absorption spectroscopy measured in total-electron-yield mode. Surf. Interface Anal. 18, 65–69 (1992).

    Article  CAS  Google Scholar 

  44. Ruosi, A. et al. Electron sampling depth and saturation effects in perovskite films investigated by soft x-ray absorption spectroscopy. Phys. Rev. B 90, 125120 (2014).

    Article  CAS  Google Scholar 

  45. Zasada, F., Piskorz, W. & Sojka, Z. Cobalt spinel at various redox conditions: DFT + U investigations into the structure and surface thermodynamics of the (100) facet. J. Phys. Chem. C 119, 19180–19191 (2015).

    Article  CAS  Google Scholar 

  46. Zasada, F. et al. Periodic DFT and HR-STEM studies of surface structure and morphology of cobalt spinel nanocrystals. Retrieving 3D shapes from 2D images. J. Phys. Chem. C 115, 6423–6432 (2011).

    Article  CAS  Google Scholar 

  47. Hu, Y., Bae, I. T., Mo, Y., Scherson, D. A. & Antonio, M. R. In situ X-ray absorption fine structure and optical reflectance studies of electrodeposited nickel hydrous oxide films in alkaline electrolytes. Can. J. Chem. 75, 1721–1729 (1997).

    Article  CAS  Google Scholar 

  48. Kanan, M. W. et al. Structure and valency of a cobalt-phosphate water oxidation catalyst determined by in situ X-ray spectroscopy. J. Am. Chem. Soc. 132, 13692–13701 (2010).

    Article  CAS  PubMed  Google Scholar 

  49. Gerken, J. B. et al. Electrochemical water oxidation with cobalt-based electrocatalysts from pH 0–14: the thermodynamic basis for catalyst structure, stability, and activity. J. Am. Chem. Soc. 133, 14431–14442 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Favaro, M. et al. Understanding the oxygen evolution reaction mechanism on CoOx using operando ambient-pressure X-ray photoelectron spectroscopy. J. Am. Chem. Soc. 139, 8960–8970 (2017).

    Article  CAS  PubMed  Google Scholar 

  51. Selcuk, S. & Selloni, A. DFT plus U study of the surface structure and stability of Co3O4(110): dependence on U. J. Phys. Chem. C 119, 9973–9979 (2015).

    Article  CAS  Google Scholar 

  52. Mattioli, G., Risch, M., Bonapasta, A. A., Dau, H. & Guidoni, L. Protonation states in a cobalt-oxide catalyst for water oxidation: fine comparison of ab initio molecular dynamics and X-ray absorption spectroscopy results. Phys. Chem. Chem. Phys. 13, 15437–15441 (2011).

    Article  CAS  PubMed  Google Scholar 

  53. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Han, B. H. et al. Nanoscale structural oscillations in perovskite oxides induced by oxygen evolution. Nat. Mater. 16, 121–126 (2017).

    Article  CAS  PubMed  Google Scholar 

  55. Liu, H. et al. Correlations among structure, electronic properties, and photochemical water oxidation: a case study on lithium cobalt oxides. ACS Catal. 5, 3791–3800 (2015).

    Article  CAS  Google Scholar 

  56. Bernicke, M. et al. Iridium oxide coatings with templated porosity as highly active oxygen evolution catalysts: structure–activity relationships. ChemSusChem 8, 1908–1915 (2015).

    Article  CAS  PubMed  Google Scholar 

  57. Reier, T. et al. Electrocatalytic oxygen evolution on iridium oxide: uncovering catalyst–substrate interactions and active iridium oxide species. J. Electrochem. Soc. 161, F876–F882 (2014).

    Article  CAS  Google Scholar 

  58. Reier, T. et al. Molecular insight in structure and activity of highly efficient, low-Ir Ir–Ni oxide catalysts for electrochemical water splitting (OER). J. Am. Chem. Soc. 137, 13031–13040 (2015).

    Article  CAS  PubMed  Google Scholar 

  59. Pfeifer, V. et al. The electronic structure of iridium oxide electrodes active in water splitting. Phys. Chem. Chem. Phys. 18, 2292–2296 (2016).

    Article  CAS  PubMed  Google Scholar 

  60. Pfeifer, V. et al. Reactive oxygen species in iridium-based OER catalysts. Chem. Sci. 7, 6791–6795 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Seo, W. S. et al. Phase- and size-controlled synthesis of hexagonal and cubic CoO nanocrystals. J. Am. Chem. Soc. 127, 6188–6189 (2005).

    Article  CAS  PubMed  Google Scholar 

  62. Knop-Gericke, A. et al. in Advances in Catalysis Vol. 52 (eds Gates, B. C. & Knözinger, H.) 213–272 (Academic Press, Burlington, 2009).

  63. Bearden, J. A. & Burr, A. F. Reevaluation of X-ray atomic energy levels. Rev. Mod. Phys. 39, 125–142 (1967).

    Article  CAS  Google Scholar 

  64. Ankudinov, A. L., Ravel, B., Rehr, J. J. & Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 58, 7565–7576 (1998).

    Article  CAS  Google Scholar 

  65. Rehr, J. J. & Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 72, 621–654 (2000).

    Article  CAS  Google Scholar 

  66. Giannozzi, P. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  PubMed  Google Scholar 

  67. Chen, J. & Selloni, A. First principles study of cobalt (hydr)oxides under electrochemical conditions. J. Phys. Chem. C 117, 20002–20006 (2013).

    Article  CAS  Google Scholar 

  68. Sit, P. H. L., Car, R., Cohen, M. H. & Selloni, A. Simple, unambiguous theoretical approach to oxidation state determination via first-principles calculations. Inorg. Chem. 50, 10259–10267 (2011).

    Article  CAS  PubMed  Google Scholar 

  69. Vinson, J. & Rehr, J. J. Ab initio Bethe–Salpeter calculations of the X-ray absorption spectra of transition metals at the L-shell edges. Phys. Rev. B 86, 195135 (2012).

    Article  CAS  Google Scholar 

  70. Vinson, J., Rehr, J. J., Kas, J. J. & Shirley, E. L. Bethe–Salpeter equation calculations of core excitation spectra. Phys. Rev. B 83, 115106 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank S. Rudi, C. Spöri, H. N. Nong, Z. Pawolek, F. Dionigi, E. Hornberger and H. Schmies (Technische Universität Berlin), as well as I. Zaharieva, J. Heitkamp and D. González-Flores (Freie Universität Berlin) for contributing to data collection at the synchrotron radiation sources. We thank S. Carlsson (Max-Lab, Lund, Sweden), J. Drnec (ESRF, Grenoble, France), and M. Mertin and F. Schäfers (Helmholtz-Zentrum Berlin) for excellent technical support at the I811 beamline of Max-Lab, ID31 of ESRF and beamline KMC-1 of BESSY II, Berlin, respectively. We thank Max-Lab, ESRF and ANKA for allocation of the synchrotron radiation beamtime. We thank Höchstleistungsrechenzentrum Stuttgart for computational facilities. We thank R. Loukrakpam for recording transmission electron microscopy micrographs and selected-area electron diffraction patterns at the Zelmi of Technische Universität Berlin. Financial support from the German Federal Ministry of Education and Research through the projects 'MEOKATS' and 'CO2EKAT' is gratefully acknowledged. A.B. acknowledges financial support from the Berlin Graduate School of Natural Sciences and Engineering. T.E.J. thanks the Alexander-von-Humboldt foundation for financial support. P.S., T.R. and D.T. acknowledge financial support from DFG through priority programme SPP1613. P.C. and H.D. gratefully acknowledge financial support from DFG.

Author information

Authors and Affiliations

Authors

Contributions

A.B. prepared all the samples, performed the electrochemical characterization, hard X-ray absorption spectroscopy at Max-Lab and HE-XRD experiments at ESRF, and analysed the data. E.M.M. and P.C. performed the hard X-ray absorption spectroscopy experiments at BESSY II and analysed the corresponding data, D.T. and A.B. performed the XPS and soft X-ray absorption spectroscopy experiments and analysed the data. T.E.J. performed the DFT calculations and wrote parts of the manuscript. M.G. performed the transmission electron microscopy. T.R. performed the scanning electron microscopy and assisted in the X-ray absorption spectroscopy at Max-Lab. A.B., H.D. and P.S. designed the research and experiments and wrote parts of the manuscript.

Corresponding authors

Correspondence to Arno Bergmann, Holger Dau or Peter Strasser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–12, Supplementary Figures 1–31, Supplementary References

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergmann, A., Jones, T.E., Martinez Moreno, E. et al. Unified structural motifs of the catalytically active state of Co(oxyhydr)oxides during the electrochemical oxygen evolution reaction. Nat Catal 1, 711–719 (2018). https://doi.org/10.1038/s41929-018-0141-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0141-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing