Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fixation of gaseous CO2 by reversing a decarboxylase for the biocatalytic synthesis of the essential amino acid l-methionine

Abstract

The use of CO2 as a building block for the synthesis of bulk chemicals appears highly attractive but has not been realized in industrial biotechnology due to the complexity and costly energy balance of conventional anabolic biosynthesis. Here, we describe the biocatalytic preparation of l-methionine from the abundant industrial intermediate methional under direct incorporation of CO2 by reversing the catabolic Ehrlich pathway. Despite unfavourable chemical equilibrium (1/554 M−1), the decarboxylase KdcA revealed half-maximal activity for its reverse reaction at astonishingly low CO2 pressure (320 kPa). Accordingly, it was possible to synthesize l-methionine under a 2 bar CO2 atmosphere when coupled to an energetically favourable transaminase or amino acid dehydrogenase reaction. Similarly, l-leucine and l-isoleucine were prepared via biocatalytic carboxylation of 3- or 2-methylbutanal, respectively. Our findings open a biotechnological route towards industrial products and enable further syntheses involving the fixation of gaseous CO2 by simply applying decarboxylases in the reverse mode.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Biosynthetic potential of the Ehrlich pathway.
Fig. 2: Theoretical and practical aspects of CO2 fixation by a decarboxylase.
Fig. 3: Enzymatic parameters for the decarboxylation of MTOB.
Fig. 4: Enzymatic parameters for determining the chemical carboxylation equilibrium.

References

  1. 1.

    Beckman, E. J. Sustainable chemistry: putting carbon dioxide to work. Nature 531, 180–181 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Scott, A. Learning to love CO2. Chem. Eng. News 93, 10–16 (2015).

    Google Scholar 

  3. 3.

    Haas, T., Krause, R., Weber, R., Demler, M. & Schmid, G. Technical photosynthesis involving CO2 electrolysis and fermentation. Nat. Catal. 1, 32–39 (2018).

    Article  Google Scholar 

  4. 4.

    Glueck, S. M., Gumus, S., Fabian, W. M. & Faber, K. Biocatalytic carboxylation. Chem. Soc. Rev. 39, 313–328 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Wieser, M., Fujii, N., Yoshida, T. & Nagasawa, T. Carbon dioxide fixation by reversible pyrrole-2-carboxylate decarboxylase from Bacillus megaterium PYR2910. Eur. J. Biochem. 257, 495–499 (1998).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Jitrapakdee, S. et al. Structure, mechanism and regulation of pyruvate carboxylase. Biochem. J. 413, 369–387 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Schwander, T. et al. A synthetic pathway for the fixation of carbon dioxide in vitro. Science 354, 900–904 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Bar-Even, A., Noor, E., Lewis, N. E. & Milo, R. Design and analysis of synthetic carbon fixation pathways. Proc. Natl Acad. Sci. USA 107, 8889–8894 (2010).

    Article  PubMed  Google Scholar 

  9. 9.

    Hazelwood, L. A., Daran, J. M., van Maris, A. J., Pronk, J. T. & Dickinson, J. R. The Ehrlich pathway for fusel alcohol production: a century of research on Saccharomyces cerevisiae metabolism. Appl. Environ. Microbiol. 74, 2259–2266 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Willke, T. Methionine production—a critical review. Appl. Microbiol. Biotechnol. 98, 9893–9914 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. 11.

    Killenberg-Jabs, M., König, S., Eberhardt, I., Hohmann, S. & Hübner, G. Role of Glu51 for cofactor binding and catalytic activity in pyruvate decarboxylase from yeast studied by site-directed mutagenesis. Biochemistry 36, 1900–1905 (1997).

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Kneen, M. M. et al. Characterization of a thiamin diphosphate-dependent phenylpyruvate decarboxylase from Saccharomyces cerevisiae. FEBS J. 278, 1842–1853 (2011).

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Smit, B. A. et al. Identification, cloning, and characterization of a Lactococcus lactis branched-chain α-keto acid decarboxylase involved in flavor formation. Appl. Environ. Microbiol. 71, 303–311 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Dolzan, M. et al. Crystal structure and reactivity of YbdL from Escherichia coli identify a methionine aminotransferase function. FEBS Lett. 571, 141–146 (2004).

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Miyazaki, M., Shibue, M., Ogino, K., Nakamura, H. & Maeda, H. Enzymatic synthesis of pyruvic acid from acetaldehyde and carbon dioxide. Chem. Commun. 18, 1800–1801 (2001).

    Article  Google Scholar 

  16. 16.

    Tong, X., El-Zahab, B., Zhao, X., Liu, Y. & Wang, P. Enzymatic synthesis of l-lactic acid from carbon dioxide and ethanol with an inherent cofactor regeneration cycle. Biotechnol. Bioeng. 108, 465–469 (2011).

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Wichmann, R., Wandrey, C., Buckmann, A. F. & Kula, M. R. Continuous enzymatic transformation in an enzyme membrane reactor with simultaneous NAD(H) regeneration. Biotechnol. Bioeng. 23, 2789–2802 (1981).

    Article  CAS  Google Scholar 

  18. 18.

    Li, H. et al. Cloning, protein sequence clarification, and substrate specificity of a leucine dehydrogenase from Bacillus sphaericus ATCC4525. Appl. Biochem. Biotechnol. 158, 343–351 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Hillmann, H. & Hofmann, T. Quantitation of key tastants and re-engineering the taste of parmesan cheese. J. Agric. Food Chem. 64, 1794–1805 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Takada, H., Yoshimura, T., Ohshima, T., Esaki, N. & Soda, K. Thermostable phenylalanine dehydrogenase of Thermoactinomyces intermedius: cloning, expression, and sequencing of its gene. J. Biochem. 109, 371–376 (1991).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Andrews, F. H. & McLeish, M. J. Substrate specificity in thiamin diphosphate-dependent decarboxylases. Bioorg. Chem. 43, 26–36 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Cleland, W. W. The kinetics of enzyme-catalyzed reactions with two or more substrates or products. I. Nomenclature and rate equations. Biochim. Biophys. Acta 67, 104–137 (1963).

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Sander, R. Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos. Chem. Phys. 15, 4399–4981 (2015).

    Article  CAS  Google Scholar 

  24. 24.

    Lerchner, A., Achatz, S., Rausch, C., Haas, T. & Skerra, A. Coupled enzymatic alcohol-to-amine conversion of isosorbide using engineered transaminases and dehydrogenases. ChemCatChem 5, 3374–3383 (2013).

    Article  CAS  Google Scholar 

  25. 25.

    Jensen, K. F. The Escherichia coli K-12 “wild types” W3110 and MG1655 have an rph frameshift mutation that leads to pyrimidine starvation due to low pyrE expression levels. J. Bacteriol. 175, 3401–3407 (1993).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Studier, F. W. & Moffatt, B. A. Use of bacteriophage T7 RNA polymerase to direct selective high-level expression of cloned genes. J. Mol. Biol. 189, 113–130 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Skerra, A. Use of the tetracycline promoter for the tightly regulated production of a murine antibody fragment in Escherichia coli. Gene 151, 131–135 (1994).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Evonik Industries for financial support, and T. Haas and H. Jakob for fruitful discussions. They are also grateful to C. Schmid, C. Dawid and T. Hofmann at TUM for LC-MS/MS measurements.

Author information

Affiliations

Authors

Contributions

A.S. developed the concept of the study. J.M. and L.E. contributed to planning the experiments, and performed the measurements. All authors conducted data analysis and discussed the results. J.M. and A.S. wrote the paper.

Corresponding author

Correspondence to Arne Skerra.

Ethics declarations

Competing interests

A.S. and L.E. declare inventorship on a patent application claiming subject matter of this study (WO 2018/104143 A1).

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–7 and Supplementary Notes 1 & 2

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Martin, J., Eisoldt, L. & Skerra, A. Fixation of gaseous CO2 by reversing a decarboxylase for the biocatalytic synthesis of the essential amino acid l-methionine. Nat Catal 1, 555–561 (2018). https://doi.org/10.1038/s41929-018-0107-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing