Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth


Supported metal nanoparticle catalysts are widely used in industry but suffer from deactivation resulting from metal sintering and coke deposition at high reaction temperatures. Here, we show an efficient and general strategy for the preparation of supported metal nanoparticle catalysts with very high resistance to sintering by fixing the metal nanoparticles (platinum, palladium, rhodium and silver) with diameters in the range of industrial catalysts (0.8–3.6 nm) within zeolite crystals (metal@zeolite) by means of a controllable seed-directed growth technique. The resulting materials are sinter resistant at 600–700 °C, and the uniform zeolite micropores allow for the diffusion of reactants enabling contact with the metal nanoparticles. The metal@zeolite catalysts exhibit long reaction lifetimes, outperforming conventional supported metal catalysts and commercial catalysts consisting of metal nanoparticles on the surfaces of solid supports during the catalytic conversion of C1 molecules, including the water-gas shift reaction, CO oxidation, oxidative reforming of methane and CO2 hydrogenation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic model of metal nanoparticles fixed within and on the outer surfaces of zeolite crystals.
Fig. 2: TEM images of supported platinum catalysts.
Fig. 3: TEM characterization of Pt@Beta.
Fig. 4: Catalytic evaluation of metal@zeolite catalysts in flow reactors.


  1. 1.

    Ertl, G., Knözinger, H., Schüth, F. & Weitkamp, J. Handbook of Heterogeneous Catalysis (Wiley, Weinheim, 2008).

  2. 2.

    Behrens, M. et al. The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336, 893–897 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Lu, J. et al. Coking- and sintering-resistant palladium catalysts achieved through atomic layer deposition. Science 335, 1205–1208 (2012).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Li, W.-Z. et al. Stable platinum nanoparticles on specific MgAl2O4 spinel facets at high temperatures in oxidizing atmospheres. Nat. Chem. 4, 2481 (2013).

    Google Scholar 

  5. 5.

    Prieto, G., Zečević, J., Friedrich, H., de Jong, K. P. & de Jongh, P. E. Towards stable catalysts by controlling collective properties of supported metal nanoparticles. Nat. Mater. 12, 34–39 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. 6.

    Tang, H. et al. Strong metal–support interactions between gold nanoparticles and nonoxides. J. Am. Chem. Soc. 138, 56–59 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Ta, N. et al. Stabilized gold nanoparticles on ceria nanorods by strong interfacial anchoring. J. Am. Chem. Soc. 134, 20585–20588 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Zhao, M.-Q. et al. Embedded high density metal nanoparticles with extraordinary thermal stability derived from guest-host mediated layered double hydroxides. J. Am. Chem. Soc. 132, 14739–14741 (2010).

    Article  CAS  PubMed  Google Scholar 

  9. 9.

    Tang, H. et al. Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal–support interaction for carbon monoxide oxidation. Angew. Chem. Int. Ed. 55, 10606–10611 (2016).

    Article  CAS  Google Scholar 

  10. 10.

    Sattler, J. J. H. B. et al. Platinum-promoted Ga/Al2O3 as highly active, selective, and stable catalyst for the dehydrogenation of propane. Angew. Chem. Int. Ed. 53, 9251–9256 (2014).

    Article  CAS  Google Scholar 

  11. 11.

    Zhang, L. Y. et al. Stabilization of palladium nanoparticles on nanodiamond–graphene core–shell supports for CO oxidation. Angew. Chem. Int. Ed. 54, 15823–15826 (2015).

    Article  CAS  Google Scholar 

  12. 12.

    Shi, L. et al. Al2O3 nanosheets rich in pentacoordinate Al3+ ions stabilize Pt–Sn clusters for propane dehydrogenation. Angew. Chem. Int. Ed. 54, 13994–13998 (2015).

    Article  CAS  Google Scholar 

  13. 13.

    Wang, S. et al. Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts. J. Am. Chem. Soc. 135, 11849–11860 (2013).

    Article  CAS  PubMed  Google Scholar 

  14. 14.

    Zhou, H. P. et al. Thermally stable Pt/CeO2 hetero-nanocomposites with high catalytic activity. J. Am. Chem. Soc. 132, 4998–4999 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Farrauto, R. J. & Bartholomew, C. H. Fundamentals of Industrial Catalytic Process (Blackie, London, 1997).

  16. 16.

    Morgan, K., Goguet, A. & Hardacre, C. Metal redispersion strategies for recycling of supported metal catalysts: a perspective. ACS Catal. 5, 3430–3445 (2015).

    Article  CAS  Google Scholar 

  17. 17.

    Dick, K., Dhanasekaran, T., Zhang, Z. Y. & Meisel, D. Size-dependent melting of silica-encapsulated gold nanoparticles. J. Am. Chem. Soc. 124, 2312–2317 (2002).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Joo, S. H. et al. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 8, 126–131 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Yu, K., Wu, Z. C., Zhao, Q. R., Li, B. X. & Xie, Y. High-temperature-stable Au@SnO2 core/shell supported catalyst for CO oxidation. J. Phys. Chem. C 112, 2244–2247 (2008).

    Article  CAS  Google Scholar 

  20. 20.

    Cargnello, M. et al. Exceptional activity for methane combustion over modular Pd@CeO2 subunits on functionalized Al2O3. Science 337, 713–717 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    Arnal, P. M., Comotti, M. & Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 45, 8224–8227 (2006).

    Article  CAS  Google Scholar 

  22. 22.

    O’Neill, B. J. et al. Stabilization of copper catalysts for liquid-phase reactions by atomic layer deposition. Angew. Chem. Int. Ed. 52, 13808–13812 (2013).

    Article  CAS  Google Scholar 

  23. 23.

    Zhan, W. et al. A sacrificial coating strategy toward enhancement of metal–support interaction for ultrastable Au nanocatalysts. J. Am. Chem. Soc. 138, 16130–16139 (2016).

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Huang, W. et al. Low-temperature transformation of methane to methanol on Pd1O4 single sites anchored on the internal surface of microporous silicate. Angew. Chem., Int. Ed. 55, 13441–13445 (2016).

    Article  CAS  Google Scholar 

  25. 25.

    Laursen, A. B. et al. Substrate size-selective catalysis with zeolite-encapsulated gold nanoparticles. Angew. Chem. Int. Ed. 49, 3504–3507 (2010).

    Article  CAS  Google Scholar 

  26. 26.

    Goel, S., Wu, Z., Zones, S. I. & Iglesia, E. Synthesis and catalytic properties of metal clusters encapsulated within small-pore (SOD, GIS, ANA) zeolites. J. Am. Chem. Soc. 134, 17688–17695 (2012).

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Wang, N. et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation. J. Am. Chem. Soc. 138, 7484–7487 (2016).

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Liu, L. et al. Generation of subnanometric platinum with high stability during transformation of a 2D zeolite into 3D. Nat. Mater. 16, 132–138 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Bond, G. C., Louis, C. & Thompson, D. T. Catalysis by Gold (Imperial College Press, London, 2006).

  30. 30.

    Iglesias-Juez, A., Kubacka, A., Fernández-García, M., Michiel, M. D. & Newton, M. A. Nanoparticulate Pd supported catalysts: size-dependent formation of Pd(I)/Pd(0) and their role in CO elimination. J. Am. Chem. Soc. 133, 4484–4489 (2011).

    Article  CAS  PubMed  Google Scholar 

  31. 31.

    Xiao, F. S., Weber, W. A., Alexeev, O. & Gates, B. C. Probing the limits of structure insensitivity: size-dependent catalytic activity of Al2O3-supported iridium clusters and particles for toluene hydrogenation. Stud. Surf. Sci. Catal. 101, 1135–1144 (1996).

    Article  CAS  Google Scholar 

  32. 32.

    Kistler, J. D. et al. A single-site platinum CO oxidation catalyst in zeolite KLTL: microscopic and spectroscopic determination of the locations of the platinum atoms. Angew. Chem. Int. Ed. 53, 8904–8907 (2014).

    Article  CAS  Google Scholar 

  33. 33.

    Cui, T.-L. et al. Encapsulating palladium nanoparticles inside mesoporous MFI zeolite nanocrystals for shape-selective catalysis. Angew. Chem. Int. Ed. 55, 9178–9182 (2016).

    Article  CAS  Google Scholar 

  34. 34.

    Wang, C. et al. Product selectivity controlled by zeolite crystals in biomass hydrogenation over a palladium catalyst. J. Am. Chem. Soc. 138, 7880–7883 (2016).

    Article  CAS  PubMed  Google Scholar 

  35. 35.

    Sachtler, W. M. H. Metal clusters in zeolites: an intriguing class of catalysts. Acc. Chem. Res. 26, 383–387 (1993).

    Article  CAS  Google Scholar 

  36. 36.

    Sun, T. & Seff, K. Silver clusters and chemistry in zeolites. Chem. Rev. 94, 857–870 (1994).

    Article  CAS  Google Scholar 

  37. 37.

    Guzman, J. in Model Systems in Catalysis (ed. Rioux, R.) Ch. 19 (Springer, New York, 2010).

  38. 38.

    Creyghton, E. J. & Downing, R. S. Shape-selective hydrogenation and hydrogen transfer reactions over zeolite catalysts. J. Mol. Catal. A 134, 47–61 (1998).

    Article  CAS  Google Scholar 

  39. 39.

    Alexeev, O. S. & Gates, B. C. Supported bimetallic cluster catalysts. Ind. Eng. Chem. Res. 42, 1571–1587 (2003).

    Article  CAS  Google Scholar 

  40. 40.

    Yamamoto, T., Shido, T., Inagaki, S., Fukushima, Y. & Ichikawa, M. Ship-in-bottle synthesis of [Pt15(CO)30]2– encapsulated in ordered hexagonal mesoporous channels of FSM-16 and their effective catalysis in water-gas shift reaction. J. Am. Chem. Soc. 118, 5810–5811 (1996).

    Article  CAS  Google Scholar 

  41. 41.

    Rodriguez, J. A. et al. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 318, 1757–1760 (2007).

    Article  CAS  PubMed  Google Scholar 

  42. 42.

    Yang, M. et al. Catalytically active Au–O(OH)x– species stabilized by alkali ions on zeolites and mesoporous oxides. Science 346, 1498–1501 (2014).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Yang, M. et al. A common single-site Pt(II)–O(OH)x– species stabilized by sodium on “active” and “inert” supports catalyzes the water-gas shift reaction. J. Am. Chem. Soc. 137, 3470–3473 (2015).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Chen, M. S., Cai, Y., Yan, Z. & Goodman, D. W. On the origin of the unique properties of supported Au nanoparticles. J. Am. Chem. Soc. 128, 6341–6346 (2006).

    Article  CAS  PubMed  Google Scholar 

  45. 45.

    Ouyang, R. & Li, W.-X. Adsorbed CO induced change of the adsorption site and charge of Au adatoms on FeO(111)/Ru(0001). Chin. J. Catal. 34, 1820–1825 (2013).

    Article  CAS  Google Scholar 

  46. 46.

    Fu, Q. et al. Interface-confined ferrous centers for catalytic oxidation. Science 328, 1141–1144 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Chen, G. et al. Interfacial effects in iron–nickel hydroxide–platinum nanoparticles enhance catalytic oxidation. Science 344, 495–499 (2014).

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Hickman, D. A. & Schmidt, L. D. Production of syngas by direct catalytic oxidation of methane. Science 259, 343–346 (1993).

    Article  CAS  PubMed  Google Scholar 

  49. 49.

    Ayabe, S. et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts. Appl. Catal. A 241, 261–269 (2003).

    Article  CAS  Google Scholar 

  50. 50.

    Carrasquillo-Flores, R. et al. Reverse water-gas shift on interfacial sites formed by deposition of oxidized molybdenum moieties onto gold nanoparticles. J. Am. Chem. Soc. 137, 10317–10325 (2015).

    Article  CAS  PubMed  Google Scholar 

Download references


This work is supported by the National Key Research and Development Program of China (2018YFB060128) and National Natural Science Foundation of China (91645105, 91634201 and 21720102001). L.W. gratefully acknowledges the Natural Science Foundation of Zhejiang Province (LR18B030002). B.C.G. acknowledges financial support from the US Department of Energy, Office of Science, Basic Energy Sciences (grant DE-FG02-04ER15513). H.Z. acknowledges financial support from the Carl-Zeiss-Stiftung. The work reported in this paper is protected by Chinese patents (application numbers 201610342078.0 and 201610341082.5).

Author information




J.Z. performed the catalyst preparation, characterizations and catalytic tests. G.W. and C.W. performed the catalytic tests. B.Z., D.S.S., H.Z., U.K., Y.Z., L.L. and Y.H. performed the TEM characterization. B.C.G. performed the data analysis and offered helpful suggestions. L.W. and F.-S.X. designed this study, analysed the data and wrote the paper.

Corresponding authors

Correspondence to Liang Wang or Feng-Shou Xiao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, L., Zhang, B. et al. Sinter-resistant metal nanoparticle catalysts achieved by immobilization within zeolite crystals via seed-directed growth. Nat Catal 1, 540–546 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing