Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols


Engineering copper-based catalysts that favour high-value alcohols is desired in view of the energy density, ready transport and established use of these liquid fuels. In the design of catalysts, much progress has been made to target the C–C coupling step; whereas comparatively little effort has been expended to target post-C–C coupling reaction intermediates. Here we report a class of core–shell vacancy engineering catalysts that utilize sulfur atoms in the nanoparticle core and copper vacancies in the shell to achieve efficient electrochemical CO2 reduction to propanol and ethanol. These catalysts shift selectivity away from the competing ethylene reaction and towards liquid alcohols. We increase the alcohol-to-ethylene ratio more than sixfold compared with bare-copper nanoparticles, highlighting an alternative approach to electroproduce alcohols instead of alkenes. We achieve a C2+ alcohol production rate of 126 ± 5 mA cm−2 with a selectivity of 32 ± 1% Faradaic efficiency.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Reaction Gibbs free energy diagram.
Fig. 2: Catalyst design and structural characterization.
Fig. 3: Characterization of the CSVE catalyst.
Fig. 4: CO2 electrochemical reduction performance in an H-cell system.
Fig. 5: CO2 electrochemical reduction performance in a flow-cell system.


  1. 1.

    Gao, S. et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 529, 68–71 (2016).

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Asadi, M. et al. Nanostructured transition metal dichalcogenide electrocatalysts for CO2 reduction in ionic liquid. Science 353, 467–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. 3.

    Liu, M. et al. Enhanced electrocatalytic CO2 reduction via field-induced reagent concentration. Nature 537, 382–386 (2016).

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Lin, S. et al. Covalent organic frameworks comprising cobalt porphyrins for catalytic CO2 reduction in water. Science 349, 1208–1213 (2015).

    Article  CAS  PubMed  Google Scholar 

  5. 5.

    Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  6. 6.

    Rogers, C. et al. Synergistic enhancement of electrocatalytic CO2 reduction with gold nanoparticles embedded in functional graphene nanoribbon composite electrodes. J. Am. Chem. Soc. 139, 4052–4061 (2017).

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Li, Y. et al. Structure-sensitive CO2 electroreduction to hydrocarbons on ultrathin 5-fold twinned copper nanowires. Nano Lett. 17, 1312–1317 (2017).

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Mistry, H. et al. Highly selective plasma-activated copper catalysts for carbon dioxide reduction to ethylene. Nat. Commun. 7, 12123 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Saberi Safaei, T. et al. High-density nanosharp microstructures enable efficient CO2 electroreduction. Nano Lett. 16, 7224–7228 (2016).

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Lei, F. et al. Metallic tin quantum sheets confined in graphene toward high-efficiency carbon dioxide electroreduction. Nat. Commun. 7, 12697 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Klinkova, A. et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate. ACS Catal. 6, 8115–8120 (2016).

    Article  CAS  Google Scholar 

  12. 12.

    ZHU, Q.-G. et al. Cu2S on Cu foam as highly efficient electrocatalyst for reduction of CO2 to formic acid. Acta Phys. Chim. Sin. 32, 261–266 (2016).

    CAS  Google Scholar 

  13. 13.

    Zhu, Q. et al. Efficient reduction of CO2 into formic acid on a lead or tin electrode using an ionic liquid catholyte mixture. Angew. Chem. Int. Ed. 55, 9012–9016 (2016).

    Article  CAS  Google Scholar 

  14. 14.

    Shinagawa, T., Larrazábal, G. O., Martín, A. J., Krumeich, F. & Perez-Ramirez, J. Sulfur-modified copper catalysts for the electrochemical reduction of carbon dioxide to formate. ACS Catal. 8, 837–844 (2017).

    Article  CAS  Google Scholar 

  15. 15.

    Huang, Y., Deng, Y., Handoko, A. D., Goh, G. K. & Yeo, B. S. Rational design of sulfur‐doped copper catalysts for the selective electroreduction of carbon dioxide to formate. ChemSusChem 11, 320–326 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. 16.

    Schouten, K. J. P., Calle‐Vallejo, F. & Koper, M. A step closer to the electrochemical production of liquid fuels. Angew. Chem. Int. Ed. 53, 10858–10860 (2014).

    Article  CAS  Google Scholar 

  17. 17.

    Li, C. W. & Kanan, M. W. CO2 reduction at low overpotential on Cu electrodes resulting from the reduction of thick Cu2O films. J. Am. Chem. Soc. 134, 7231–7234 (2012).

    Article  CAS  PubMed  Google Scholar 

  18. 18.

    Loiudice, A. et al. Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016).

    Article  CAS  Google Scholar 

  19. 19.

    Gawande, M. B. et al. Cu and Cu-based nanoparticles: synthesis and applications in catalysis. Chem. Rev. 116, 3722–3811 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. 20.

    Hahn, C. et al. Engineering Cu surfaces for the electrocatalytic conversion of CO2: controlling selectivity toward oxygenates and hydrocarbons. Proc. Natl Acad. Sci. USA 114, 5918–5923 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. 21.

    De Luna, P. et al. Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction. Nat. Catal. 1, 103–110 (2018).

    Article  Google Scholar 

  22. 22.

    Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phy. Chem. Lett. 6, 4073–4082 (2015).

    Article  CAS  Google Scholar 

  23. 23.

    Adit Maark, T. & Nanda, B. R. K. Enhancing CO2 electroreduction by tailoring strain and ligand effects in bimetallic copper–rhodium and copper–nickel heterostructures. J. Phy. Chem. C 121, 4496–4504 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    van den Berg, R. et al. Structure sensitivity of Cu and CuZn catalysts relevant to industrial methanol synthesis. Nat. Commun. 7, 13057 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Xiao, H., Goddard, W. A., Cheng, T., & Liu, Y. Cu metal embedded in oxidized matrix catalyst to promote CO2 activation and CO dimerization for electrochemical reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6685–6688 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. 26.

    Favaro, M. et al. Subsurface oxide plays a critical role in CO2 activation by Cu(111) surfaces to form chemisorbed CO2, the first step in reduction of CO2. Proc. Natl Acad. Sci. USA 114, 6706–6711 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Kasatkin, I., Kurr, P., Kniep, B., Trunschke, A. & Schlögl, R. Role of lattice strain and defects in copper particles on the activity of Cu/ZnO/Al2O3 catalysts for methanol synthesis. Angew. Chem. Int. Ed. 46, 7324–7327 (2007).

    Article  CAS  Google Scholar 

  28. 28.

    Liu, X. et al. Size‐controlled synthesis of Cu2‐xE (E = S, Se) nanocrystals with strong tunable near‐infrared localized surface plasmon resonance and high conductivity in thin films. Adv. Funct. Mater. 23, 1256–1264 (2013).

    Article  CAS  Google Scholar 

  29. 29.

    Luther, J. M., Jain, P. K., Ewers, T. & Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 10, 361–366 (2011).

    Article  CAS  PubMed  Google Scholar 

  30. 30.

    Hu, X. & Hirschmugl, C. Long-range metal-mediated interactions between S and CO on Cu(100). Phys. Rev. B 72, 205439 (2005).

    Article  CAS  Google Scholar 

  31. 31.

    Montoya, J. H., Shi, C., Chan, K. & Nørskov, J. K. Theoretical insights into a CO dimerization mechanism in CO2 electroreduction. J. Phy. Chem. Lett. 6, 2032–2037 (2015).

    Article  CAS  Google Scholar 

  32. 32.

    Montoya, J. H., Peterson, A. A. & Nørskov, J. K. Insights into C–C coupling in CO2 electroreduction on copper electrodes. ChemCatChem 5, 737–742 (2013).

    Article  CAS  Google Scholar 

  33. 33.

    Schouten, K. J. P., Kwon, Y., van der Ham, C. J. M., Qin, Z. & Koper, M. T. M. A new mechanism for the selectivity to C1 and C2 species in the electrochemical reduction of carbon dioxide on copper electrodes. Chem. Sci. 2, 1902–1909 (2011).

    Article  CAS  Google Scholar 

  34. 34.

    Calle‐Vallejo, F. & Koper, M. Theoretical considerations on the electroreduction of CO to C2 species on Cu(100) electrodes. Angew. Chem. Int. Ed. 52, 7282–7285 (2013).

    Article  CAS  Google Scholar 

  35. 35.

    Zhuang, T. T., Fan, F. J., Gong, M. & Yu, S. H. Cu1.94S nanocrystal seed mediated solution-phase growth of unique Cu2S-PbS heteronanostructures. Chem. Commun. 48, 9762–9764 (2012).

    Article  CAS  Google Scholar 

  36. 36.

    Han, S. K., Gong, M., Yao, H. B., Wang, Z. M. & Yu, S. H. One‐pot controlled synthesis of hexagonal‐prismatic Cu1.94S‐ZnS, Cu1.94S‐ZnS‐Cu1.94S, and Cu1.94S‐ZnS‐Cu1.94S‐ZnS‐Cu1.94S heteronanostructures. Angew. Chem. Int. Ed. 51, 6365–6368 (2012).

    Article  CAS  Google Scholar 

  37. 37.

    Zhuang, T.-T. et al. Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angew. Chem. Int. Ed. 55, 6396–6400 (2016).

    Article  CAS  Google Scholar 

  38. 38.

    Xie, Y. et al. Copper sulfide nanocrystals with tunable composition by reduction of covellite nanocrystals with Cu+ ions. J. Am. Chem. Soc. 135, 17630–17637 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Kvashnina, K. et al. Electronic structure of complex copper systems probed by resonant inelastic X-ray scattering at Cu L3 edge. Phys. B 404, 3559–3566 (2009).

    Article  CAS  Google Scholar 

  40. 40.

    Todd, E., Sherman, D. & Purton, J. Surface oxidation of chalcopyrite (CuFeS2) under ambient atmospheric and aqueous (pH 2–10) conditions: Cu, Fe L-and O K-edge X-ray spectroscopy. Geochim. Cosmochim. Acta 67, 2137–2146 (2003).

    Article  CAS  Google Scholar 

  41. 41.

    Chakraverty, S., Mitra, S., Mandal, K., Nambissan, P. & Chattopadhyay, S. Positron annihilation studies of some anomalous features of Ni Fe2O4 nanocrystals grown in SiO2. Phys. Rev. B 71, 024115 (2005).

    Article  CAS  Google Scholar 

  42. 42.

    Li, Z. et al. Dual vacancies: an effective strategy realizing synergistic optimization of thermoelectric property in BiCuSeO. J. Am. Chem. Soc. 137, 6587–6593 (2015).

    Article  CAS  PubMed  Google Scholar 

  43. 43.

    Gao, S. et al. Highly efficient and exceptionally durable CO2 photoreduction to methanol over freestanding defective single-unit-cell bismuth vanadate layers. J. Am. Chem. Soc. 139, 3438–3445 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. 44.

    Ma, S., Luo, R., Moniri, S., Lan, Y. & Kenis, P. J. A. Efficient electrochemical flow system with improved anode for the conversion of CO2 to CO. J. Electrochem. Soc. 161, F1124–F1131 (2014).

    Article  CAS  Google Scholar 

  45. 45.

    Ma, S., Lan, Y., Perez, G. M. J., Moniri, S. & Kenis, P. J. A. Silver supported on titania as an active catalyst for electrochemical carbon dioxide reduction. ChemSusChem 7, 866–874 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Thang Dinh, C. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    Article  CAS  Google Scholar 

  47. 47.

    Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    Article  CAS  Google Scholar 

  48. 48.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  49. 49.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  CAS  Google Scholar 

  50. 50.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  51. 51.

    Muttaqien, F. et al. CO2 adsorption on the copper surfaces: van der Waals density functional and TPD studies. J. Phys. Chem. C 147, 094702 (2017).

    Article  CAS  Google Scholar 

  52. 52.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  53. 53.

    Wu, Y., Wadia, C., Ma, W., Sadtler, B. & Alivisatos, A. P. Synthesis and photovoltaic application of copper (I) sulfide nanocrystals. Nano Lett. 8, 2551–2555 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Guo, H. et al. Shape-selective formation of monodisperse copper nanospheres and nanocubes via disproportionation reaction route and their optical properties. J. Phys. Chem. C 118, 9801–9808 (2014).

    Article  CAS  Google Scholar 

Download references


This work was supported by TOTAL American Services, the Ontario Research Fund Research Excellence programme, the Natural Sciences and Engineering Research Council (NSERC) of Canada, the CIFAR Bio-Inspired Solar Energy programme and a University of Toronto Connaught grant. S.-H.Y. acknowledges funding from the National Natural Science Foundation of China (grant 21431006) and the Foundation for Innovative Research Groups of the National Natural Science Foundation of China (grant 21521001). All DFT computations were performed on the IBM BlueGene/Q supercomputer with support from the Southern Ontario Smart Computing Innovation Platform (SOSCIP). SOSCIP is funded by the Federal Economic Development Agency of Southern Ontario, the Province of Ontario, IBM Canada, Ontario Centres of Excellence, Mitacs and 15 Ontario academic member institutions. Z.L. acknowledges a scholarship from the China Scholarship Council (CSC) (201607090041). A.S. acknowledges Fonds de Recherche du Quebec—Nature et Technologies (FRQNT) for support in the form of a postdoctoral fellowship award. P.D.L. acknowledges NSERC for support in the form of a Canada Graduate Scholarship doctoral award. P.D.L. also wishes to acknowledge Y. Hu and the Canadian Light Source for assistance with X-ray absorption experiments. The authors thank A. Ip, Y. Wang, J. Fan, J. Li, C. Zou and Y. Zhou from the University of Toronto for fruitful discussions.

Author information




E.H.S. and S.-H.Y. supervised the project. T.-T.Z. designed and carried out the experiments. Z.-Q.L. helped to investigate the performance measurements. A.S., F.C. and Y.M. carried out simulations. Y.L. helped to characterize the structure of catalyst. P.D.L. and R.Q.-B. performed the X-ray spectroscopy measurements. F.M. and B.-J.Y. carried out positron annihilation. All authors discussed the results and assisted during manuscript preparation.

Corresponding authors

Correspondence to Shu-Hong Yu or Edward H. Sargent.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Figures 1–20; Supplementary Tables 1–11; Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhuang, TT., Liang, ZQ., Seifitokaldani, A. et al. Steering post-C–C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols. Nat Catal 1, 421–428 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing