Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ligand-enabled site-selectivity in a versatile rhodium(ii)-catalysed aryl C–H carboxylation with CO2

This article has been updated

Abstract

Although carbon dioxide (CO2) is an attractive renewable carbon source, its utilization to produce fine chemicals through the catalytic carboxylation of unactivated carbon–hydrogen (C–H) bonds is still very limited and remains a challenge, largely because CO2 is thermodynamically and kinetically stable. In particular, the generation of (hetero)aromatic carboxylic acids via a transition-metal-catalysed C–H carboxylation of arenes with CO2 is extremely rare. Here we report a ligand-enabled site-selective carboxylation of 2-arylphenols under atmospheric pressure of CO2 through a Rh2(OAc)4-catalysed and chelation-assisted C–H bond activation. Remarkably, the reaction occurs selectively on the less nucleophilic phenyl group with the promotion of a phosphine ligand, which overrides the site selectivity dictated by the well-known Kolbe–Schmitt type reaction. The non-acidic C–H bonds within several important classes of heterocycles were also efficiently carboxylated with this method. A mechanistic investigation revealed complexes of active catalysts and that this reaction proceeds under redox-neutral reaction conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Ligand-enabled site-selective C–H carboxylation of 2-arylphenols with CO2.
Fig. 2: Active-catalyst elucidation.
Fig. 3: Mechanistic studies and tentative catalytic cycle.

Similar content being viewed by others

Change history

  • 29 April 2020

    In the originally published PDF version of this Article, corresponding author information was missing for author Gang Li. This includes an email address in the affiliations section on the first page, and a line instructing readers who to address ‘correspondence and requests for materials’ to, on the final page. These have now been updated.

References

  1. Aresta, M., Dibenedetto, A. & Angelini, A. Catalysis for the valorization of exhaust carbon: from CO2 to chemicals, materials, and fuels. Technological use of CO2. Chem. Rev. 114, 1709–1742 (2014).

    CAS  PubMed  Google Scholar 

  2. Liu, Q., Wu, L., Jackstell, R. & Beller, M. Using carbon dioxide as a building block in organic synthesis. Nat. Commun. 6, 5933 (2015).

    PubMed  Google Scholar 

  3. Dalton, D. M. & Rovis, T. C–H carboxylation takes gold. Nat. Chem. 2, 710–711 (2010).

    CAS  PubMed  Google Scholar 

  4. Ackermann, L. Transition-metal-catalyzed carboxylation of C–H bonds. Angew. Chem. Int. Ed. 50, 3842–3844 (2011).

    CAS  Google Scholar 

  5. Brill, M., Lazreg, F., Cazin, C. S. J. & Nolan, S. P. Transition metal-catalyzed carboxylation of organic substrates with carbon dioxide. Top. Organomet. Chem. 53, 225–278 (2015).

    Google Scholar 

  6. Zhang, L. & Hou, Z. N-Heterocyclic carbene (NHC)–copper-catalysed transformations of carbon dioxide. Chem. Sci. 4, 3395–3403 (2013).

    CAS  Google Scholar 

  7. Börjesson, M., Moragas, T., Gallego, D. & Martin, R. Metal-catalyzed carboxylation of organic (pseudo)halides with CO2. ACS Catal. 6, 6739–6749 (2016).

    PubMed  PubMed Central  Google Scholar 

  8. Huang, K., Sun, C.-L. & Shi, Z.-J. Transition-metal-catalyzed C–C bond formation through the fixation of carbon dioxide. Chem. Soc. Rev. 40, 2435–2452 (2011).

    CAS  PubMed  Google Scholar 

  9. Luo, J. & Larrosa, I. C–H carboxylation of aromatic compounds through CO2 fixation. ChemSusChem 10, 3317–3332 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Juliá-Hernández, F., Moragas, T., Cornella, J. & Martin, R. Remote carboxylation of halogenated aliphatic hydrocarbons with carbon dioxide. Nature 545, 84–88 (2017).

    PubMed  Google Scholar 

  11. Seo, H., Katcher, M. H. & Jamison, T. F. Photoredox activation of carbon dioxide for amino acid synthesis in continuous flow. Nat. Chem. 9, 453–456 (2017).

    CAS  PubMed  Google Scholar 

  12. Masuda, Y., Ishida, N. & Murakami, M. Light-driven carboxylation of o-alkylphenyl ketones with CO2. J. Am. Chem. Soc. 137, 14063–14066 (2015).

    CAS  PubMed  Google Scholar 

  13. Michigami, K., Mita, T. & Sato, Y. Cobalt-catalyzed allylic C(sp 3)–H carboxylation with CO2. J. Am. Chem. Soc. 139, 6094–6097 (2017).

    CAS  PubMed  Google Scholar 

  14. Sasano, K., Takaya, J. & Iwasawa, N. Palladium(ii)-catalyzed direct carboxylation of alkenyl C–H bonds with CO2. J. Am. Chem. Soc. 135, 10954–10957 (2013).

    CAS  PubMed  Google Scholar 

  15. Li, Y., Yan, T., Junge, K. & Beller, M. Catalytic methylation of C–H bonds using CO2 and H2. Angew. Chem. Int. Ed. 53, 10476–10480 (2014).

    CAS  Google Scholar 

  16. Gooßen, L. J., Rodríguez, N., Manjolinho, F. & Lange, P. P. Synthesis of propiolic acids via copper-catalyzed insertion of carbon dioxide into the C−H bond of terminal alkynes. Adv. Synth. Catal. 352, 2913–2917 (2010).

    Google Scholar 

  17. Yu, D. & Zhang, Y. Copper- and copper–N-heterocyclic carbene-catalyzed C–H activating carboxylation of terminal alkynes with CO2 at ambient conditions. Proc. Natl Acad. Sci. USA 107, 20184–20189 (2010).

    CAS  PubMed  Google Scholar 

  18. Zhang, W.-Z., Li, W.-J., Zhang, X., Zhou, H. & Lu, X.-B. Cu(i)-catalyzed carboxylative coupling of terminal alkynes, allylic chlorides, and CO2. Org. Lett. 12, 4748–4751 (2010).

    CAS  PubMed  Google Scholar 

  19. Yu, B. et al. Carboxylation of terminal alkynes at ambient CO2 pressure in ethylene carbonate. Green. Chem. 15, 2401–2407 (2013).

    CAS  Google Scholar 

  20. Lindsey, A. S. & Jeskey, H. The Kolbe–Schmitt reaction. Chem. Rev. 57, 583–620 (1957).

    CAS  Google Scholar 

  21. Fenner, S. & Ackermann, L. C–H carboxylation of heteroarenes with ambient CO2. Green. Chem. 18, 3804–3807 (2016).

    CAS  Google Scholar 

  22. Luo, J., Preciado, S., Xie, P. & Larrosa, I. Carboxylation of phenols with CO2 at atmospheric pressure. Chem. Eur. J. 22, 6798–6802 (2016).

    CAS  PubMed  Google Scholar 

  23. Banerjee, A., Dick, G. R., Yoshino, T. & Kanan, M. W. Carbon dioxide utilization via carbonate-promoted C–H carboxylation. Nature 531, 215–219 (2016).

    CAS  PubMed  Google Scholar 

  24. Zhang, Z. et al. Lactamization of sp 2 C–H bonds with CO2: transition-metal-free and redox-neutral. Angew. Chem. Int. Ed. 55, 7068–7072 (2016).

    CAS  Google Scholar 

  25. Zhang, Z. et al. Transition-metal-free lactonization of sp 2 C–H bonds with CO2. Org. Lett. 19, 396–399 (2017).

    CAS  PubMed  Google Scholar 

  26. Wang, S., Shao, P., Du, G. & Xi, C. MeOTf- and TBD-mediated carbonylation of ortho-arylanilines with CO2 leading to phenanthridinones. J. Org. Chem. 81, 6672–6676 (2016).

    CAS  PubMed  Google Scholar 

  27. Yoo, W.-J., Capdevila, M. G., Du, X. & Kobayashi, S. Base-mediated carboxylation of unprotected indole derivatives with carbon dioxide. Org. Lett. 14, 5326–5329 (2012).

    CAS  PubMed  Google Scholar 

  28. Vechorkin, O., Hirt, N. & Hu, X. Carbon dioxide as the C1 source for direct C−H functionalization of aromatic heterocycles. Org. Lett. 12, 3567–3569 (2010).

    CAS  PubMed  Google Scholar 

  29. Olah, G. A. et al. Efficient chemoselective carboxylation of aromatics to arylcarboxylic acids with a superelectrophilically activated carbon dioxide−Al2Cl6/Al system. J. Am. Chem. Soc. 124, 11379–11391 (2002).

    CAS  PubMed  Google Scholar 

  30. Ukai, K., Aoki, M., Takaya, J. & Iwasawa, N. Rhodium(i)-catalyzed carboxylation of aryl- and alkenylboronic esters with CO2. J. Am. Chem. Soc. 128, 8706–8707 (2006).

    CAS  PubMed  Google Scholar 

  31. Ohishi, T., Nishiura, M. & Hou, Z. Carboxylation of organoboronic esters catalyzed by N-heterocyclic carbene copper(i) complexes. Angew. Chem. Int. Ed. 47, 5792–5795 (2008).

    CAS  Google Scholar 

  32. Yeung, C. S. & Dong, V. M. Beyond Aresta’s complex: Ni- and Pd-catalyzed organozinc coupling with CO2. J. Am. Chem. Soc. 130, 7826–7827 (2008).

    CAS  PubMed  Google Scholar 

  33. Williams, C. M., Johnson, J. B. & Rovis, T. Nickel-catalyzed reductive carboxylation of styrenes using CO2. J. Am. Chem. Soc. 130, 14936–14937 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Correa, A. & Martin, R. Palladium-catalyzed direct carboxylation of aryl bromides with carbon dioxide. J. Am. Chem. Soc. 131, 15974–15975 (2009).

    CAS  PubMed  Google Scholar 

  35. Fujihara, T., Nogi, K., Xu, T., Terao, J. & Tsuji, Y. Nickel-catalyzed carboxylation of aryl and vinyl chlorides employing carbon dioxide. J. Am. Chem. Soc. 134, 9106–9109 (2012).

    CAS  PubMed  Google Scholar 

  36. Zhang, X. et al. Silver(i)-catalyzed carboxylation of arylboronic esters with CO2. Chem. Commun. 48, 6292–6294 (2012).

    CAS  Google Scholar 

  37. Tran-Vu, H. & Daugulis, O. Copper-catalyzed carboxylation of aryl iodides with carbon dioxide. ACS Catal. 3, 2417–2420 (2013).

    CAS  Google Scholar 

  38. Shimomaki, K., Murata, K., Martin, R. & Iwasawa, N. Visible-light-driven carboxylation of aryl halides by the combined use of palladium and photoredox catalysts. J. Am. Chem. Soc. 139, 9467–9470 (2017).

    CAS  PubMed  Google Scholar 

  39. Boogaerts, I. I. F. & Nolan, S. P. Carboxylation of C–H bonds using N-heterocyclic carbene gold(i) complexes. J. Am. Chem. Soc. 132, 8858–8859 (2010).

    CAS  PubMed  Google Scholar 

  40. Boogaerts, I. I. F., Fortman, G. C., Furst, M. R., Cazin, C. S. J. & Nolan, S. P. Carboxylation of N–H/C–H bonds using N-heterocyclic carbene copper(i) complexes. Angew. Chem. Int. Ed. 49, 8674–8677 (2010).

    CAS  Google Scholar 

  41. Zhang, L., Cheng, J., Ohishi, T. & Hou, Z. Copper-catalyzed direct carboxylation of C−H bonds with carbon dioxide. Angew. Chem. Int. Ed. 49, 8670–8673 (2010).

    CAS  Google Scholar 

  42. Inomata, H., Ogata, K., Fukuzawa, S. & Hou, Z. Direct C–H carboxylation with carbon dioxide using 1, 2, 3-triazol-5-ylidene copper(i) complexes. Org. Lett. 14, 3986–3989 (2012).

    CAS  PubMed  Google Scholar 

  43. Mizuno, H., Takaya, J. & Iwasawa, N. Rhodium(i)-catalyzed direct carboxylation of arenes with CO2 via chelation-assisted C–H bond activation. J. Am. Chem. Soc. 133, 1251–1253 (2011).

    CAS  PubMed  Google Scholar 

  44. Suga, T., Mizuno, H., Takaya, J. & Iwasawa, N. Direct carboxylation of simple arenes with CO2 through a rhodium-catalyzed C–H bond activation. Chem. Commun. 50, 14360–14363 (2014).

    CAS  Google Scholar 

  45. Suga, T., Saitou, T., Takaya, J. & Iwasawa, N. Mechanistic study of the rhodium-catalyzed carboxylation of simple aromatic compounds with carbon dioxide. Chem. Sci. 8, 1454–1462 (2017).

    CAS  PubMed  Google Scholar 

  46. Luo, S., Luo, F.-X., Zhang, X.-S. & Shi, Z.-J. Synthesis of dibenzopyranones through palladium-catalyzed directed C–H activation/carbonylation of 2-arylphenols. Angew. Chem. Int. Ed. 52, 10598–10601 (2013).

    CAS  Google Scholar 

  47. Albano, P., Aresta, M. & Manassero, M. Interaction of carbon dioxide with coordinatively unsaturated rhodium(i) complexes with the ligand 1,2-bis(diphenylphosphino)ethane. Inorg. Chem. 19, 1069–1072 (1980).

    CAS  Google Scholar 

  48. Kuhl, N., Schröder, N. & Glorius, F. Formal SN-type reactions in rhodium(iii)-catalyzed C–H bond activation. Adv. Synth. Catal. 356, 1443–1460 (2014).

    CAS  Google Scholar 

  49. Kim, M., Kwak, J. & Chang, S. Rhodium/N-heterocyclic carbene catalyzed direct intermolecular arylation of sp 2 and sp 3 C-H bonds with chelation assistance. Angew. Chem. Int. Ed. 48, 8935–8939 (2009).

    CAS  Google Scholar 

  50. Fiorani, G., Guo, W. & Kleij, A. W. Sustainable conversion of carbon dioxide: the advent of organocatalysis. Green. Chem. 17, 1375–1389 (2015).

    CAS  Google Scholar 

  51. Pope, B. M., Yamamoto, Y. & Tarbell, D. S. Di-tert-butyl dicarbonate. Org. Syn. 57, 45–50 (1977).

    CAS  Google Scholar 

  52. Neog, K., Borah, A. & Gogoi, P. Palladium(ii)-catalyzed C–H bond activation/C–C and C–O bond formation reaction cascade: direct synthesis of coumestans. J. Org. Chem. 81, 11971–11977 (2016).

    CAS  PubMed  Google Scholar 

  53. Wu, Y., Chen, Z., Yang, Y., Zhu, W. & Zhou, B. Rh(iii)-catalyzed redox-neutral unsymmetrical C–H alkylation and amidation reactions of N-phenoxyacetamides. J. Am. Chem. Soc. 140, 42–45 (2018).

    CAS  PubMed  Google Scholar 

  54. Tan, Y. & Hartwig, J. F. Palladium-catalyzed amination of aromatic C–H bonds with oxime esters. J. Am. Chem. Soc. 132, 3676–3677 (2010).

    CAS  PubMed  Google Scholar 

  55. Muzart, J. N,N-Dimethylformamide: much more than a solvent. Tetrahedron 65, 8313–8323 (2009).

    CAS  Google Scholar 

  56. Tran, B. L., Li, B., Driess, M. & Hartwig, J. F. Copper-catalyzed intermolecular amidation and imidation of unactivated alkanes. J. Am. Chem. Soc. 136, 2555–2563 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant no. XDB20000000), Natural Science Foundation of Fujian (2017J06007, 2017J05038), NSFC (Grant nos 21702206 and 21402198), the 100 Talents Program of Fujian Province, the National 1000 Youth Talents Program and the State Key Laboratory of Structural Chemistry.

Author information

Authors and Affiliations

Authors

Contributions

L.F. and S.L. performed the experiments and developed the reactions. S.L. did the mechanistic studies. Z.C. helped to develop the reaction of 2-pyridinylphenol. Y.D. helped to prepare the substrates. X.-Q.G., D.Y. and Q.-F.S. collected and analysed the X-ray crystallography data. L.-P.Z. collected the high-resolution mass spectra data of the complexes. G.L. designed and supervised the project and wrote the manuscript with feedback from L.F., S.L. and Z.C.

Corresponding author

Correspondence to Gang Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Tables 1–7; Supplementary References; Supplementary Figures 1–98

CIF file for compound 5

Crystallographic data for compound 5, CCDC reference 1819284

CIF file for compound 6

Crystallographic data for compound 6, CCDC reference 1819415

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Li, S., Cai, Z. et al. Ligand-enabled site-selectivity in a versatile rhodium(ii)-catalysed aryl C–H carboxylation with CO2. Nat Catal 1, 469–478 (2018). https://doi.org/10.1038/s41929-018-0080-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-018-0080-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing