Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis


Amines are a quintessential moiety in bioactive molecules, pharmaceuticals and organic materials. Transition-metal-catalysed C–N coupling of aryl electrophiles has been established as a powerful and reliable method for amine synthesis. However, the analogous C–N coupling of alkyl electrophiles is largely under-developed due to the decomposition of metal alkyl intermediates by β-hydrogen elimination and difficulty in C(sp3)–N reductive elimination. Here, we provide a general strategy for amination of alkyl electrophiles by merging photoredox and copper catalysis. Photoredox catalysis allows the use of alkyl redox-active esters, recently established as a superior class of alkyl electrophiles, whereas copper catalysis enables C(sp3)–N cross-coupling. Decarboxylative amination can be used for the synthesis of a diverse set of alkyl anilines with high chemoselectivity and functional-group compatibility. Rapid functionalization of amino acids, natural products and drugs is demonstrated.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Reaction development.
Fig. 2: Synthetic applications.
Fig. 3: Control reactions. 
Fig. 4: Reactions of copper amine complexes with a redox-active ester.


  1. 1.

    Lawrence, S. A. Amines: Synthesis Properties and Applications (Cambridge Univ. Press, Cambridge, 2004).

  2. 2.

    Ricci, A. Amino Group Chemistry: From Synthesis to the Life Sciences (Wiley-VCH, Weinheim, 2008).

  3. 3.

    Edwards, M. al Borrowing hydrogen: a catalytic route to C–C bond formation from alcohols.Chem. Commun. 90–91 (2004)..

  4. 4.

    Watson, A. J. A. & Williams, J. M. J. The give and take of alcohol activation. Science 329, 635–636 (2010).

    CAS  Article  Google Scholar 

  5. 5.

    Hollmann, D., Tillack, A., Michalik, D., Jackstell, R. & Beller, M. An improved ruthenium catalyst for the environmentally benign amination of primary and secondary alcohols. Chem. Asian J. 2, 403–410 (2007).

    CAS  Article  Google Scholar 

  6. 6.

    Sorribes, I., Junge, K. & Beller, M. Direct catalytic N-alkylation of amines with carboxylic acids. J. Am. Chem. Soc. 136, 14314–14319 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Yang, Q., Wang, Q. & Yu, Z. Substitution of alcohols by N-nucleophiles via transition metal-catalyzed dehydrogenation. Chem. Soc. Rev. 44, 2305–2329 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    Ley, S. V. & Thomas, A. W. Modern synthetic methods for copper-mediated C(aryl)–O, C(aryl)–N, and C(aryl)–S bond formation. Angew. Chem. Int. Ed. 42, 5400–5449 (2003).

    CAS  Article  Google Scholar 

  9. 9.

    Sambiagio, C., Marsden, S. P., Blacker, A. J. & McGowan, P. C. Copper catalysed Ullmann type chemistry: from mechanistic aspects to modern development. Chem. Soc. Rev. 43, 3525–3550 (2014).

    CAS  Article  Google Scholar 

  10. 10.

    Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 41, 1534–1544 (2008).

    CAS  Article  Google Scholar 

  11. 11.

    Surry, D. S. & Buchwald, S. L. Dialkylbiaryl phosphines in Pd-catalyzed amination: a user’s guide. Chem. Sci. 2, 27–50 (2011).

    CAS  Article  Google Scholar 

  12. 12.

    Choi, J. & Fu, G. C. Transition metal-catalyzed alkyl–alkyl bond formation: another dimension in cross-coupling chemistry. Science 356, eaaf7230 (2017).

    Article  Google Scholar 

  13. 13.

    Hu, X. Nickel-catalyzed cross coupling of non-activated alkyl halides: a mechanistic perspective. Chem. Sci. 2, 1867–1886 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Tasker, S. Z., Standley, E. A. & Jamison, T. F. Recent advances in homogeneous nickel catalysis. Nature 509, 299–309 (2014).

    CAS  Article  Google Scholar 

  15. 15.

    Macgregor, S. A., Neave, G. W. & Smith, C. Theoretical studies on C–heteroatom bond formation via reductive elimination from group 10 M(PH3)2(CH3)(X) species (X=CH3, NH2, OH, SH) and the determination of metal–X bond strengths using density functional theory. Faraday Discuss. 124, 111–127 (2003).

    CAS  Article  Google Scholar 

  16. 16.

    Bissember, A. C., Lundgren, R. J., Creutz, S. E., Peters, J. C. & Fu, G. C. Transition-metal-catalyzed alkylations of amines with alkyl halides: photoinduced, copper-catalyzed couplings of carbazoles. Angew. Chem. Int. Ed. 52, 5129–5133 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    Do, H.-Q., Bachman, S., Bissember, A. C., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature. J. Am. Chem. Soc. 136, 2162–2167 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Zhao, W., Wurz, R. P., Peters, J. C. & Fu, G. C. Photoinduced, copper-catalyzed decarboxylative C–N coupling to generate protected amines: an alternative to the Curtius rearrangement. J. Am. Chem. Soc. 139, 12153–12156 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Cheung, C. W. & Hu, X. Amine synthesis via iron-catalysed reductive coupling of nitroarenes with alkyl halides. Nat. Commun. 7, 12494 (2016).

    Article  Google Scholar 

  21. 21.

    Gui, J. et al. Practical olefin hydroamination with nitroarenes. Science 348, 886–891 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Cornella, J. et al. Practical Ni-catalyzed aryl–alkyl cross-coupling of secondary redox-active esters. J. Am. Chem. Soc. 138, 2174–2177 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    Qin, T. et al. A general alkyl–alkyl cross-coupling enabled by redox-active esters and alkylzinc reagents. Science 352, 801–805 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Toriyama, F. et al. Redox-active esters in Fe-catalyzed C–C coupling. J. Am. Chem. Soc. 138, 11132–11135 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Li, C. et al. Decarboxylative borylation. Science 356, eaam7355 (2017).

    Article  Google Scholar 

  26. 26.

    Fawcett, A. et al. Photoinduced decarboxylative borylation of carboxylic acids. Science 357, 283–286 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Candish, L., Teders, M. & Glorius, F. Transition-metal-free, visible-light-enabled decarboxylative borylation of aryl N-hydroxyphthalimide esters. J. Am. Chem. Soc. 139, 7440–7443 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Hu, D., Wang, L. & Li, P. Decarboxylative borylation of aliphatic esters under visible-light photoredox conditions. Org. Lett. 19, 2770–2773 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    Xue, W. & Oestreich, M. Copper-catalyzed decarboxylative radical silylation of redox-active aliphatic carboxylic acid derivatives. Angew. Chem. Int. Ed. 56, 11649–11652 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Zuo, Z. et al. Merging photoredox with nickel catalysis: coupling of α-carboxyl sp 3-carbons with aryl halides. Science 345, 437–440 (2014).

    CAS  Article  Google Scholar 

  31. 31.

    Zuo, Z. & MacMillan, D. W. Decarboxylative arylation of α-amino acids via photoredox catalysis: a one-step conversion of biomass to drug pharmacophore. J. Am. Chem. Soc. 136, 5257–5260 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Fang, Z., Feng, Y., Dong, H., Li, D. & Tang, T. Copper(i)-catalyzed radical decarboxylative imidation of carboxylic acids with N-fluoroarylsulfonimides. Chem. Commun. 52, 11120–11123 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Liu, Z. J. et al. Directing group in decarboxylative cross-coupling: copper-catalyzed site-selective C–N bond formation from nonactivated aliphatic carboxylic acids. J. Am. Chem. Soc. 138, 9714–9719 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Huihui, K. M. et al. Decarboxylative cross-electrophile coupling of N-hydroxyphthalimide esters with aryl iodides. J. Am. Chem. Soc. 138, 5016–5019 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Jamison, C. R. & Overman, L. E. Fragment coupling with tertiary radicals generated by visible-light photocatalysis. Acc. Chem. Res. 49, 1578–1586 (2016).

    CAS  Article  Google Scholar 

  36. 36.

    Okada, K., Okamoto, K., Morita, N., Okubo, K. & Oda, M. Photosensitized decarboxylative Michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J. Am. Chem. Soc. 113, 9401–9402 (1991).

    CAS  Article  Google Scholar 

  37. 37.

    Zhang, H., Zhang, P., Jiang, M., Yang, H. & Fu, H. Merging photoredox with copper catalysis: decarboxylative alkynylation of α-amino acid derivatives. Org. Lett. 19, 1016–1019 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Tellis, J. C., Primer, D. N. & Molander, G. A. Single-electron transmetalation in organoboron cross-coupling by photoredox/nickel dual catalysis. Science 345, 433–436 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Skubi, K. L., Blum, T. R. & Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 116, 10035–10074 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Corcoran, E. B. et al. Aryl amination using ligand-free Ni(ii) salts and photoredox catalysis. Science 353, 279–283 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Yoo, W.-J., Tsukamoto, T. & Kobayashi, S. Visible-light-mediated Chan–Lam coupling reactions of aryl boronic acids and aniline derivatives. Angew. Chem. Int. Ed. 54, 6587–6590 (2015).

    CAS  Article  Google Scholar 

  42. 42.

    Zhang, Y., Yang, X., Yao, Q. & Ma, D. CuI/DMPAO-catalyzed N-arylation of acyclic secondary amines. Org. Lett. 14, 3056–3059 (2012).

    CAS  Article  Google Scholar 

  43. 43.

    Zhou, W., Fan, M., Yin, J., Jiang, Y. & Ma, D. CuI/Oxalic diamide catalyzed coupling reaction of (hetero)aryl chlorides and amines. J. Am. Chem. Soc. 137, 11942–11945 (2015).

    CAS  Article  Google Scholar 

  44. 44.

    Collins, K. D. & Glorius, F. A robustness screen for the rapid assessment of chemical reactions. Nat. Chem. 5, 597–601 (2013).

    CAS  Article  Google Scholar 

  45. 45.

    Keenan, M. et al. Two analogues of fenarimol show curative activity in an experimental model of Chagas disease. J. Med. Chem. 56, 10158–10170 (2013).

    CAS  Article  Google Scholar 

Download references


This work is supported by the NoNoMeCat Marie Skłodowska-Curie training network funded by the European Union under the Horizon 2020 Programme (675020-MSCA-ITN-2015-ETN). We thank R. Scopelliti (École Polytechnique Fédérale de Lausanne) for assistance with X-ray crystallography of 9a.

Author information




R.M. and X.H. conceived and designed the study. R.M. designed and optimized the synthetic method, and studied the scope, application and mechanism. A.F. and J.B. contributed to the scope and application. R.M. and X.H. wrote the manuscript. X.H. directed the research.

Corresponding author

Correspondence to Xile Hu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Supplementary Tables 1–10, Supplementary Figures 1–100, Supplementary References.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mao, R., Frey, A., Balon, J. et al. Decarboxylative C(sp3)–N cross-coupling via synergetic photoredox and copper catalysis. Nat Catal 1, 120–126 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing