Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ternary intermetallic LaCoSi as a catalyst for N2 activation


Activating high-energy multiple bonds using earth-abundant metals is one of the most significant challenges in catalysis. Here, we show that LaCoSi—a ternary intermetallic compound—is an efficient and stable catalyst for N2 activation to produce NH3. The ammonia synthesis is significantly promoted by shifting the reaction bottleneck from the sluggish N2 dissociation to NH x formation, which few catalysts have achieved. Theoretical calculations reveal that the negatively charged cobalt mediates electron transfer from lanthanum to the adsorbed N2, which further reduces the activation barrier of N2 dissociation. Most importantly, the specific LaCoSi geometric configuration stabilizes the N2 adsorption with a strong exothermic effect, which dramatically decreases the apparent energy barrier of N2 activation. Consequently, LaCoSi shows a superior activity (1,250 μmol g−1 h−1), with a 60-fold increase over the activity of supported cobalt catalysts under mild reaction conditions (400 °C, 0.1 MPa).

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structural properties of LaCoSi.
Fig. 2: Electronic structure and hydrogen storage property of LaCoSi.
Fig. 3: Catalytic performances of the LaCoSi catalyst.
Fig. 4: Kinetic analysis of ammonia synthesis over LaCoSi.
Fig. 5: N2 activation pathways over metallic cobalt and intermetallic LaCoSi.


  1. 1.

    Dumesic, J. A., Huber G. W. & Boudart, M. Handbook of Heterogeneous Catalysis (Wiley-VCH Verlag, Weinheim, 2008).

  2. 2.

    Huang, F., Liu, Z. Q. & Yu, Z. K. C-alkylation of ketones and related compounds by alcohols: transition-metal-catalyzed dehydrogenation. Angew. Chem. Int. Ed. 55, 862–875 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Han, F. S. Transition-metal-catalyzed Suzuki–Miyaura cross-coupling reactions: a remarkable advance from palladium to nickel catalysts. Chem. Soc. Rev. 42, 5270–5298 (2013).

    CAS  Article  Google Scholar 

  4. 4.

    Armbruster, M., Schlogl, R. & Grin, Y. Intermetallic compounds in heterogeneous catalysis—a quickly developing field. Sci. Technol. Adv. Mater. 15, 1–17 (2014).

    Article  Google Scholar 

  5. 5.

    Armbruster, M. et al. Pd–Ga intermetallic compounds as highly selective semihydrogenation catalysts. J. Am. Chem. Soc. 132, 14745–14747 (2010).

    Article  Google Scholar 

  6. 6.

    Armbrüster, M. et al. Al13Fe4 as a low-cost alternative for palladium in heterogeneous hydrogenation. Nat. Mater. 11, 690–693 (2012).

    Article  Google Scholar 

  7. 7.

    Erisman, J. W., Sutton, M. A., Galloway, J., Klimont, Z. & Winiwarter, W. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636–639 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Gambarotta, S. & Scott, J. Multimetallic cooperative activation of N2. Angew. Chem. Int. Ed. 43, 5298–5308 (2004).

    CAS  Article  Google Scholar 

  9. 9.

    Pool, J. A., Lobkovsky, E. & Chirik, P. J. Hydrogenation and cleavage of dinitrogen to ammonia with a zirconium complex. Nature 427, 527–530 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    Aika, K., Ozaki, A. & Hori, H. Activation of nitrogen by alkali metal promoted transition metal I. Ammonia synthesis over ruthenium promoted by alkali metal. J. Catal. 27, 424–431 (1972).

    CAS  Article  Google Scholar 

  11. 11.

    Ozaki, A. Development of alkali-promoted ruthenium as a novel catalyst for ammonia synthesis. Acc. Chem. Res. 14, 16–21 (1981).

    CAS  Article  Google Scholar 

  12. 12.

    Bielawa, H., Hinrichsen, O., Birkner, A. & Muhler, M. The ammonia-synthesis catalyst of the next generation: barium-promoted oxide-supported ruthenium. Angew. Chem. Int. Ed. 40, 1061–1063 (2001).

    CAS  Article  Google Scholar 

  13. 13.

    Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    CAS  Article  Google Scholar 

  14. 14.

    Rao, C. N. R. & Rao, G. R. Nature of nitrogen adsorbed on transition metal surfaces as revealed by electron spectroscopy and cognate techniques. Surf. Sci. Rep. 13, 221–263 (1991).

    CAS  Article  Google Scholar 

  15. 15.

    Ertl, G., Lee, S. B. & Weiss, M. Adsorption of nitrogen on potassium promoted Fe(111) and (100) surfaces. Surf. Sci. 114, 527–545 (1982).

    CAS  Article  Google Scholar 

  16. 16.

    Logadottir, A. & Norskov, J. K. Ammonia synthesis over a Ru(0001) surface studied by density functional calculations. J. Catal. 220, 273–279 (2003).

    CAS  Article  Google Scholar 

  17. 17.

    Kitano, M. et al. Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis. Nat. Commun. 6, 6731 (2015).

    CAS  Article  Google Scholar 

  18. 18.

    Wang, P. et al. Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation. Nat. Chem. 9, 64–70 (2017).

    CAS  Google Scholar 

  19. 19.

    Inoue, Y. et al. Efficient and stable ammonia synthesis by self-organized flat Ru nanoparticles on calcium amide. ACS Catal. 6, 7577–7584 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Kitano, M. et al. Essential role of hydride ion in ruthenium-based ammonia synthesis catalysts. Chem. Sci. 7, 4036–4043 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Lu, Y. et al. Water durable electride Y5Si3: electronic structure and catalytic activity for ammonia synthesis. J. Am. Chem. Soc. 138, 3970–3973 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Kitano, M. et al. Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store. Nat. Chem. 4, 934–940 (2012).

    CAS  Article  Google Scholar 

  23. 23.

    Mizoguchi, H. et al. Hydride-based electride material, LnH2 (Ln = La, Ce, or Y). Inorg. Chem. 55, 8833–8838 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    Hargreaves, J. S. J. Nitrides as ammonia synthesis catalysts and as potential nitrogen transfer reagents. Appl. Petrochem. Res. 4, 3–10 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Zeinalipour-Yazdi, C. D., Hargreaves, J. S. J. & Catlow, C. R. A. Nitrogen activation in a Mars–van Krevelen mechanism for ammonia synthesis on Co3Mo3N. J. Phys. Chem. C 119, 28368–28376 (2015).

    CAS  Article  Google Scholar 

  26. 26.

    Laassiri, S., Zeinalipour-Yazdi, C. D., Catlow, C. R. A. & Hargreaves, J. S. J. The potential of manganese nitride based materials as nitrogen transfer reagents for nitrogen chemical looping. Appl. Catal. B Environ. 223, 60–66 (2018).

    Article  Google Scholar 

  27. 27.

    Wu, J. et al. Tiered electron anions in multiple voids of LaScSi and their applications to ammonia synthesis. Adv. Mater. 29, 1700924 (2017).

    Article  Google Scholar 

  28. 28.

    Gupta, S. & Suresh, K. G. Review on magnetic and related properties of RTX compounds. J. Alloy. Compd 618, 562–606 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Welter, R., Venturini, G., Ressouche, E. & Malaman, B. Magnetic properties of RCoSi (R = La–Sm, Gd, Tb) compounds from susceptibility measurements and neutron diffraction studies. J. Alloy. Compd. 210, 279–286 (1994).

    CAS  Article  Google Scholar 

  30. 30.

    Liu, G. et al. MoS2 monolayer catalyst doped with isolated Co atoms for the hydrodeoxygenation reaction. Nat. Chem. 9, 810–816 (2017).

    CAS  Article  Google Scholar 

  31. 31.

    Zhou, J. et al. Synthesis of Co–Sn intermetallic nanocatalysts toward selective hydrogenation of citral. J. Mater. Chem. A 4, 12825–12832 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Deng, D. et al. A single iron site confined in a graphene matrix for the catalytic oxidation of benzene at room temperature. Sci. Adv. 1, e1500462 (2015).

    Article  Google Scholar 

  33. 33.

    Yano, J. & Yachandra, V. K. X-ray absorption spectroscopy. Photosynth. Res. 102, 241–254 (2009).

    CAS  Article  Google Scholar 

  34. 34.

    Tang, W., Sanville, E. & Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condens. Matter 21, 084204 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    Kakuta, H., Ogawa, T., Takamura, H. & Okada, M. Protium absorption properties of La–TM–Si (TM = Co, Ni) ternary intermetallic compounds. Mater. T. Jim. 39, 769–772 (1998).

    CAS  Article  Google Scholar 

  36. 36.

    Liu, H. Ammonia synthesis catalyst 100 years: practice, enlightenment and challenge. Chin. J. Catal. 35, 1619–1640 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Kojima, R. & Aika, K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 1. Preparation and characterization. Appl. Catal. A 215, 149–160 (2001).

    CAS  Article  Google Scholar 

  38. 38.

    Kojima, R. & Aika, K. Cobalt molybdenum bimetallic nitride catalysts for ammonia synthesis: Part 2. Kinetic study. Appl. Catal. A 218, 121–128 (2001).

    CAS  Article  Google Scholar 

  39. 39.

    Takeshita, T., Wallace, W. E. & Craig, R. S. Rare earth intermetallics as synthetic ammonia catalysts. J. Catal. 44, 236–243 (1976).

    CAS  Article  Google Scholar 

  40. 40.

    Hagen, S. et al. Ammonia synthesis with barium-promoted iron–cobalt alloys supported on carbon. J. Catal. 214, 327–335 (2003).

    CAS  Article  Google Scholar 

  41. 41.

    Aika, K. et al. Support and promoter effect of ruthenium catalyst. III. Kinetics of ammonia synthesis over various Ru catalysts. Appl. Catal. 28, 57–68 (1986).

    CAS  Article  Google Scholar 

  42. 42.

    Kobayashi, Y., Kitano, M., Kawamura, S., Yokoyama, T. & Hosono, H. Kinetic evidence: the rate-determining step for ammonia synthesis over electride-supported Ru catalysts is no longer the nitrogen dissociation step. Catal. Sci. Technol. 7, 47–50 (2017).

    CAS  Article  Google Scholar 

  43. 43.

    Jacobsen, C. J. H. et al. Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. J. Am. Chem. Soc. 123, 8404–8405 (2001).

    CAS  Article  Google Scholar 

  44. 44.

    Wang, J. J. et al. Adsorption of atomic and molecular oxygen on 3C-SiC(111) and (111) surfaces: a first-principles study. Phys. Rev. B 79, 125304 (2009).

    Article  Google Scholar 

  45. 45.

    Vojvodic, A. et al. Exploring the limits: a low-pressure, low-temperature Haber–Bosch process. Chem. Phys. Lett. 598, 108–112 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    CAS  Article  Google Scholar 

  47. 47.

    Zabinsky, S. I., Rehr, J. J., Ankudinov, A., Albers, R. C. & Eller, M. J. Multiple-scattering calculations of x-ray-absorption spectra. Phys. Rev. B 52, 2995–3009 (1995).

    CAS  Article  Google Scholar 

  48. 48.

    Siporin, S. E. & Davis, R. J. Use of kinetic models to explore the role of base promoters on Ru/MgO ammonia synthesis catalysts. J. Catal. 225, 359–368 (2004).

    CAS  Article  Google Scholar 

  49. 49.

    Kresse, G. & Furthmuller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 6, 15–50 (1996).

    CAS  Article  Google Scholar 

  50. 50.

    Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  51. 51.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

Download references


This work was supported by the Accelerated Innovation Research Initiative Turning Top Science and Ideas into High-Impact Values (ACCEL) programme of the Japan Science and Technology Agency. H.H. was supported by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research (S), No.17H06153. The authors thank S. Fujitsu (Tokyo Institute of Technology) for technical support with the Auger electron spectroscopy measurements.

Author information




H.H. proposed the idea behind the research and supervised the project. Y.G., J.Wu, M.K., T.-N.Y., J.L., K.K. and H.Y. performed the synthesis, characterization and catalytic measurements. J.Wang carried out the model construction and density functional theory calculations. H.A. and Y.N. helped with the X-ray absorption fine-structure measurements. Y.G. and Y.K. performed the kinetic calculations. Y.G., J.Wu, J.Wang and H.H. co-wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Junjie Wang or Hideo Hosono.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods; Supplementary Figures 1–29; Supplementary Tables 1–5; Supplementary References

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Wu, J., Kitano, M. et al. Ternary intermetallic LaCoSi as a catalyst for N2 activation. Nat Catal 1, 178–185 (2018).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing