Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Physical reservoir computing with emerging electronics

Abstract

Physical reservoir computing is a form of neuromorphic computing that harvests the dynamic properties of materials for high-efficiency computing. A wide range of physical systems can be used to implement this approach, including electronic, optical and mechanical devices. Electronics can, in particular, provide mixed-signal and fully analogue systems, and could be used to deliver large-scale implementations. Here we examine the development of physical reservoir computing with emerging electronics. We discuss the different architectures, physical nodes, and input and output layers of electrical reservoir computing. We also explore performance benchmarks and the competitiveness of different implementations. Finally, we consider the future development of the technology and highlight challenges that need to be addressed for it to deliver practical applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Biological, digital and physical RC.
Fig. 2: eRC architecture taxonomy.
Fig. 3: Physical nodes.
Fig. 4: Input layer and output layer.
Fig. 5: Evolution of RC implementations.

Similar content being viewed by others

References

  1. Moore, G. E. Cramming more components onto integrated circuits (reprinted from Electronics, 114–117, 19 April 1965). Proc. IEEE 86, 82–85 (1998).

    Google Scholar 

  2. Frank, D. J. et al. Device scaling limits of Si MOSFETs and their application dependencies. Proc. IEEE 89, 259–288 (2001).

    Google Scholar 

  3. Schaller, R. R. Moore’s Law: past, present and future. IEEE Spectr. 34, 52–59 (1997).

    Google Scholar 

  4. Backus, J. Can programming be liberated from the von Neumann style? Commun. ACM 21, 613–641 (1978).

    MathSciNet  Google Scholar 

  5. Zhang, W. Q. et al. Neuro-inspired computing chips. Nat. Electron. 3, 371–382 (2020).

    Google Scholar 

  6. Ielmini, D. & Wong, H. S. P. In-memory computing with resistive switching devices. Nat. Electron. 1, 333–343 (2018).

    Google Scholar 

  7. Indiveri, G. & Liu, S. C. Memory and information processing in neuromorphic systems. Proc. IEEE 103, 1379–1397 (2015).

    Google Scholar 

  8. Cazettes, F. et al. A reservoir of foraging decision variables in the mouse brain. Nat. Neurosci. 26, 840–849 (2023).

    Google Scholar 

  9. Mante, V., Sussillo, D., Shenoy, K. V. & Newsome, W. T. Context-dependent computation by recurrent dynamics in prefrontal cortex. Nature 503, 78–84 (2013).

    Google Scholar 

  10. Sussillo, D. & Abbott, L. F. Generating coherent patterns of activity from chaotic neural networks. Neuron 63, 544–557 (2009).

    Google Scholar 

  11. Enel, P., Procyk, E., Quilodran, R. & Dominey, P. F. Reservoir computing properties of neural dynamics in prefrontal cortex. PLoS Comput. Biol. 12, e1004967 (2016).

    Google Scholar 

  12. Suárez, L. E., Richards, B. A., Lajoie, G. & Misic, B. Learning function from structure in neuromorphic networks. Nat. Mach. Intell. 3, 771–786 (2021).

    Google Scholar 

  13. Jaeger, H. The ‘Echo State’ Approach to Analysing and Training Recurrent Neural Networks—with an Erratum Note Technical Report 148, 13 (German National Research Center for Information Technology, 2001). This paper proposed the concept of the ESN.

  14. Natschläger, T., Maass, W. W. & Markram, H. The ‘liquid computer’: a novel strategy for real-time computing on time series. Spec. Issue Found. Inf. Process. TELEMATIK 8, 39–43 (2002).

    Google Scholar 

  15. Maass, W., Natschläger, T. & Markram, H. Real-time computing without stable states: a new framework for neural computation based on perturbations. Neural Comput. 14, 2531–2560 (2002). This paper proposed the LSM.

  16. Verstraeten, D., Schrauwen, B., D’Haene, M. & Stroobandt, D. An experimental unification of reservoir computing methods. Neural Netw. 20, 391–403 (2007). This paper unified ESN and LSM as reservoir computing.

    Google Scholar 

  17. Lukoševičius, M. A practical guide to applying echo state networks. Lect. Notes Comput. Sci. 7700 LECTU, 659–686 (2012).

    Google Scholar 

  18. Jaeger, H. Short Term Memory in Echo State Networks (GMD Forschungszentrum Informationstechnik, 2002).

  19. Gallicchio, C. & Micheli, A. Richness of deep echo state network dynamics. In 2019 Advances in Computational Intelligence: 15th International Work-Conference on Artificial Neural Networks (IWANN) Part I 15 480–491 (Springer, 2019).

  20. Sun, C. et al. A systematic review of echo state networks from design to application. IEEE Trans. Artif. Intell. 5, 23–37 (2022).

    Google Scholar 

  21. Lukoševičius, M. & Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 3, 127–149 (2009).

    Google Scholar 

  22. Chang, H. T. & Futagami, K. Reinforcement learning with convolutional reservoir computing. Appl. Intell. 50, 2400–2410 (2020).

    Google Scholar 

  23. Du, C. et al. Reservoir computing using dynamic memristors for temporal information processing. Nat. Commun. 8, 2204 (2017). This paper proposed dynamic devices RC.

    Google Scholar 

  24. Moon, J. et al. Temporal data classification and forecasting using a memristor-based reservoir computing system. Nat. Electron. 2, 480–487 (2019).

    Google Scholar 

  25. Sun, L. et al. In-sensor reservoir computing for language learning via two-dimensional memristors. Sci. Adv. 7, eabg1455 (2021).

    Google Scholar 

  26. Nakajima, M. et al. Physical deep learning with biologically inspired training method: gradient-free approach for physical hardware. Nat. Commun. 13, 7847 (2022).

    Google Scholar 

  27. Cucchi, M., Abreu, S., Ciccone, G., Brunner, D. & Kleemann, H. Hands-on reservoir computing: a tutorial for practical implementation. Neuromorphic Comput. Eng. 2, 032002 (2022).

    Google Scholar 

  28. Tanaka, G. et al. Recent advances in physical reservoir computing: a review. Neural Netw. 115, 100–123 (2019). This paper reviews more general PRC.

    Google Scholar 

  29. Nakajima, K. Physical reservoir computing-an introductory perspective. Jpn J. Appl. Phys. 59, 060501 (2020).

    Google Scholar 

  30. Fernando, C. & Sojakka, S. in Advances in Artificial Life (eds Banzhaf, W. et al.) 588–597 (Springer, 2003). This paper fulfilled the idea of LSM in physical domain.

  31. Appeltant, L. et al. Information processing using a single dynamical node as complex system. Nat. Commun. 2, 468 (2011). This paper proposed delay-coupled RC.

    Google Scholar 

  32. Liang, X. et al. Rotating neurons for all-analog implementation of cyclic reservoir computing. Nat. Commun. 13, 1549 (2022). This paper proposed rotating neurons RC.

    Google Scholar 

  33. Zhong, Y. N. et al. A memristor-based analogue reservoir computing system for real-time and power-efficient signal processing. Nat. Electron. 5, 672–681 (2022). This paper reports the design an all-analogue dynamic devices RC system.

  34. Vandoorne, K. et al. Toward optical signal processing using photonic reservoir computing. Opt. Express 16, 11182–11192 (2008).

    Google Scholar 

  35. Duport, F., Schneider, B., Smerieri, A., Haelterman, M. & Massar, S. All-optical reservoir computing. Opt. Express 20, 22783–22795 (2012).

    Google Scholar 

  36. Larger, L. et al. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing. Opt. Express 20, 3241–3249 (2012).

    Google Scholar 

  37. Paquot, Y. et al. Optoelectronic reservoir computing. Sci. Rep. 2, 287 (2012).

    Google Scholar 

  38. Brunner, D., Soriano, M. C., Mirasso, C. R. & Fischer, I. Parallel photonic information processing at gigabyte per second data rates using transient states. Nat. Commun. 4, 1364 (2013).

    Google Scholar 

  39. Larger, L. et al. High-speed photonic reservoir computing using a time-delay-based architecture: million words per second classification. Phys. Rev. X 7, 011015 (2017).

    Google Scholar 

  40. Brunner, D., Soriano, M. C. & Van der Sande, G. Photonic Reservoir Computing: Optical Recurrent Neural Networks (Walter de Gruyter, 2019).

  41. Rafayelyan, M., Dong, J., Tan, Y. Q., Krzakala, F. & Gigane, S. Large-scale optical reservoir computing for spatiotemporal chaotic systems prediction. Phys. Rev. X 10, 041037 (2020).

    Google Scholar 

  42. Dambre, J. et al. in Reservoir Computing: Theory, Physical Implementations and Applications (eds Nakajima, K. & Fischer, I.) 397–419 (Springer, 2021).

  43. Nakajima, M., Tanaka, K. & Hashimoto, T. Scalable reservoir computing on coherent linear photonic processor. Commun. Phys. 4, 20 (2021).

    Google Scholar 

  44. Nakajima, K. et al. A soft body as a reservoir: case studies in a dynamic model of octopus-inspired soft robotic arm. Front. Comput. Neurosci. 7, 91 (2013).

    Google Scholar 

  45. Caluwaerts, K. et al. Design and control of compliant tensegrity robots through simulation and hardware validation. J. R. Soc. Interface 11, 20140520 (2014).

    Google Scholar 

  46. Nakajima, K., Li, T., Hauser, H. & Pfeifer, R. Exploiting short-term memory in soft body dynamics as a computational resource. J. R. Soc. Interface 11, 20140437 (2014).

    Google Scholar 

  47. Nakajima, K., Hauser, H., Li, T. & Pfeifer, R. Information processing via physical soft body. Sci. Rep. 5, 10487 (2015).

    Google Scholar 

  48. Bhovad, P. & Li, S. Physical reservoir computing with origami and its application to robotic crawling. Sci. Rep. 11, 13002 (2021).

    Google Scholar 

  49. Tanaka, K. et al. Flapping-wing dynamics as a natural detector of wind direction. Adv. Intell. Syst. 3, 2000174 (2021).

    Google Scholar 

  50. Sakurai, R., Nishida, M., Jo, T., Wakao, Y. & Nakajima, K. Durable pneumatic artificial muscles with electric conductivity for reliable physical reservoir computing. J. Robot. Mechatron. 34, 240–248 (2022).

    Google Scholar 

  51. Tanaka, K. et al. Self‐organization of remote reservoirs: transferring computation to spatially distant locations. Adv. Intell. Syst. 4, 2100166 (2021).

    Google Scholar 

  52. Hauser, H. in Reservoir Computing Natural Computing Series (eds Nakajima, K. & Fischer, I.) Ch. 8 (Springer, 2021).

  53. Fujii, K. & Nakajima, K. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 024030 (2017).

    Google Scholar 

  54. Ghosh, S., Paterek, T. & Liew, T. C. H. Quantum neuromorphic platform for quantum state preparation. Phys. Rev. Lett. 123, 260404 (2019).

    Google Scholar 

  55. Chen, J. Y., Nurdin, H. I. & Yamamoto, N. Temporal information processing on noisy quantum computers. Phys. Rev. Appl. 14, 024065 (2020).

    Google Scholar 

  56. Martinez-Pena, R., Giorgi, G. L., Nokkala, J., Soriano, M. C. & Zambrini, R. Dynamical phase transitions in quantum reservoir computing. Phys. Rev. Lett. 127, 100502 (2021).

    Google Scholar 

  57. Kubota, T. et al. Temporal information processing induced by quantum noise. Phys. Rev. Res. 5, 023057 (2023).

    Google Scholar 

  58. Tran, Q. H. & Nakajima, K. Learning temporal quantum tomography. Phys. Rev. Lett. 127, 260401 (2021).

    MathSciNet  Google Scholar 

  59. Mujal, P. et al. Opportunities in quantum reservoir computing and extreme learning machines. Adv. Quantum Technol. 4, 2100027 (2021).

    Google Scholar 

  60. Fujii, K. & Nakajima, K. in Reservoir Computing Natural Computing Series (eds Nakajima, K. & Fischer, I.) Ch. 18 (Springer, 2021).

  61. Ghosh, S., Nakajima, K., Krisnanda, T., Fujii, K. & Liew, T. C. H. Quantum neuromorphic computing with reservoir computing networks. Adv. Quantum Technol. 4, 2100053 (2021).

    Google Scholar 

  62. Nakajima, K. & Fischer, I. Reservoir Computing (Springer, 2021).

  63. Cao, J. et al. Emerging dynamic memristors for neuromorphic reservoir computing. Nanoscale 14, 289–298 (2022).

    Google Scholar 

  64. Rodan, A. & Tino, P. Minimum complexity echo state network. IEEE Trans. Neural Netw. 22, 131–144 (2011).

    Google Scholar 

  65. Ortin, S. et al. A unified framework for reservoir computing and extreme learning machines based on a single time-delayed neuron. Sci. Rep. 5, 14945 (2015).

    Google Scholar 

  66. Soriano, M. C., Brunner, D., Escalona-Moran, M., Mirasso, C. R. & Fischer, I. Minimal approach to neuro-inspired information processing. Front. Comput. Neurosci. 9, 68 (2015).

    Google Scholar 

  67. Soriano, M. C. et al. Delay-based reservoir computing: noise effects in a combined analog and digital implementation. IEEE Trans. Neural Netw. Learn. Syst. 26, 388–393 (2015).

    MathSciNet  Google Scholar 

  68. Liang, X., Li, H., Vuckovic, A., Mercer, J. & Heidari, H. A neuromorphic model with delay-based reservoir for continuous ventricular heartbeat detection. IEEE Trans. Biomed. Eng. 69, 1837–1849 (2022).

    Google Scholar 

  69. Appeltant, L. Reservoir Computing based on Delay-Dynamical Systems. PhD thesis, Univ. Illes Balears (2012).

  70. Ortín, S. & Pesquera, L. Tackling the trade-off between information processing capacity and rate in delay-based reservoir computers. Front. Phys. 7, 210 (2019).

  71. Stelzer, F., Rohm, A., Ludge, K. & Yanchuk, S. Performance boost of time-delay reservoir computing by non-resonant clock cycle. Neural Netw. 124, 158–169 (2020).

    Google Scholar 

  72. Bai, K. J., Liu, L. J. & Yi, Y. Spatial-temporal hybrid neural network with computing-in-memory architecture. IEEE Trans. Circuits Syst. I Regul. Pap. 68, 2850–2862 (2021).

    Google Scholar 

  73. Chandrasekaran, S. T., Bhanushali, S. P., Banerjee, I. & Sanyal, A. Toward real-time, at-home patient health monitoring using reservoir computing CMOS IC. IEEE J. Emerg. Sel. Top. Circuits Syst. 11, 829–839 (2021).

    Google Scholar 

  74. Van der Sande, G., Brunner, D. & Soriano, M. C. Advances in photonic reservoir computing. Nanophotonics 6, 561–576 (2017).

    Google Scholar 

  75. Kendall, J. D. & Kumar, S. The building blocks of a brain-inspired computer. Appl. Phys. Rev. 7, 011305 (2020).

    Google Scholar 

  76. Nakajima, K., Fujii, K., Negoro, M., Mitarai, K. & Kitagawa, M. Boosting computational power through spatial multiplexing in quantum reservoir computing. Phys. Rev. Appl. 11, 034021 (2019).

    Google Scholar 

  77. Zhong, Y. et al. Dynamic memristor-based reservoir computing for high-efficiency temporal signal processing. Nat. Commun. 12, 408 (2021).

    Google Scholar 

  78. Yang, J. et al. Tunable synaptic characteristics of a Ti/TiO2/Si memory device for reservoir computing. ACS Appl. Mater. Interfaces 13, 33244–33252 (2021).

    Google Scholar 

  79. Wang, T., Huang, H. M., Wang, X. X. & Guo, X. An artificial olfactory inference system based on memristive devices. Infomat 3, 804–813 (2021).

    Google Scholar 

  80. Jaafar, A. H. et al. 3D-structured mesoporous silica memristors for neuromorphic switching and reservoir computing. Nanoscale 14, 17170–17181 (2022).

    Google Scholar 

  81. Zhu, X., Wang, Q. & Lu, W. D. Memristor networks for real-time neural activity analysis. Nat. Commun. 11, 2439 (2020).

    Google Scholar 

  82. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428–431 (2017).

    Google Scholar 

  83. Tang, M. F. et al. A compact fully ferroelectric-FETs reservoir computing network with sub-100-ns operating speed. IEEE Electron Device Lett. 43, 1555–1558 (2022).

    Google Scholar 

  84. Yu, J. et al. Energy efficient and robust reservoir computing system using ultrathin (3.5 nm) ferroelectric tunneling junctions for temporal data learning. In 2021 IEEE Symposium on VLSI Technology 1–2 (IEEE, 2021).

  85. Duong, N. T. et al. Dynamic ferroelectric transistor-based reservoir computing for spatiotemporal information processing. Adv. Intell. Syst. 5, 2300009 (2023).

    Google Scholar 

  86. Chen, Z. et al. All-ferroelectric implementation of reservoir computing. Nat. Commun. 14, 3585 (2023).

    Google Scholar 

  87. Liang, X. C., Luo, Y. Y., Pei, Y. L., Wang, M. Y. & Liu, C. Multimode transistors and neural networks based on ion-dynamic capacitance. Nat. Electron. 5, 859–869 (2022).

    Google Scholar 

  88. Nishioka, D. et al. Edge-of-chaos learning achieved by ion-electron-coupled dynamics in an ion-gating reservoir. Sci. Adv. 8, eade1156 (2022).

    Google Scholar 

  89. Liu, K. et al. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 5, 761–773 (2022).

    Google Scholar 

  90. Jang, Y. H. et al. Time-varying data processing with nonvolatile memristor-based temporal kernel. Nat. Commun. 12, 5727 (2021).

    Google Scholar 

  91. Du, W. et al. An optoelectronic reservoir computing for temporal information processing. IEEE Electron Device Lett. 43, 406–409 (2022).

    Google Scholar 

  92. Zhang, Z. et al. In-sensor reservoir computing system for latent fingerprint recognition with deep ultraviolet photo-synapses and memristor array. Nat. Commun. 13, 6590 (2022).

    Google Scholar 

  93. Lao, J. et al. Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. 9, e2106092 (2022).

    Google Scholar 

  94. Milano, G. et al. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Nat. Mater. 21, 195–202 (2022).

    Google Scholar 

  95. Sillin, H. O. et al. A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing. Nanotechnology 24, 384004 (2013). This paper proposed in materia RC.

    Google Scholar 

  96. Kan, S. H. et al. Simple reservoir computing capitalizing on the nonlinear response of materials: theory and physical implementations. Phys. Rev. Appl. 15, 024030 (2021).

    Google Scholar 

  97. Tanaka, H. et al. In-materio computing in random networks of carbon nanotubes complexed with chemically dynamic molecules: a review. Neuromorphic Comput. Eng. 2, 022002 (2022).

    Google Scholar 

  98. Diaz-Alvarez, A. et al. Emergent dynamics of neuromorphic nanowire networks. Sci. Rep. 9, 14920 (2019).

    Google Scholar 

  99. Daniels, R. K. et al. Reservoir computing with 3D nanowire networks. Neural Netw. 154, 122–130 (2022).

    Google Scholar 

  100. Hochstetter, J. et al. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12, 4008 (2021).

    Google Scholar 

  101. Milano, G., Montano, K. & Ricciardi, C. In materia implementation strategies of physical reservoir computing with memristive nanonetworks. J. Phys. D 56, 084005 (2023).

  102. Lilak, S. et al. Spoken digit classification by in-materio reservoir computing with neuromorphic atomic switch networks. Front. Nanotechnol. https://doi.org/10.3389/fnano.2021.675792 (2021).

  103. Tanaka, H. et al. A molecular neuromorphic network device consisting of single-walled carbon nanotubes complexed with polyoxometalate. Nat. Commun. 9, 2693 (2018).

    Google Scholar 

  104. Usami, Y. et al. In-materio reservoir computing in a sulfonated polyaniline network. Adv. Mater. 33, e2102688 (2021).

    Google Scholar 

  105. Cucchi, M. et al. Reservoir computing with biocompatible organic electrochemical networks for brain-inspired biosignal classification. Sci. Adv. 7, eabh0693 (2021).

    Google Scholar 

  106. Jiang, W. C. et al. Physical reservoir computing using magnetic skyrmion memristor and spin torque nano-oscillator. Appl. Phys. Lett. 115, 192403 (2019).

    Google Scholar 

  107. Nako, E., Toprasertpong, K., Nakane, R., Takenaka, M. & Takagi, S. Experimental demonstration of novel scheme of HZO/Si FeFET reservoir computing with parallel data processing for speech recognition. In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 220–221 (IEEE, 2022).

  108. Toprasertpong, K. et al. Reservoir computing on a silicon platform with a ferroelectric field-effect transistor. Commun. Eng. 1, 21 (2022).

    Google Scholar 

  109. Liu, K. et al. Multilayer reservoir computing based on ferroelectric α-In2Se3 for hierarchical information processing. Adv. Mater. 34, e2108826 (2022).

    Google Scholar 

  110. Momeni, A. & Fleury, R. Electromagnetic wave-based extreme deep learning with nonlinear time-Floquet entanglement. Nat. Commun. 13, 2651 (2022).

    Google Scholar 

  111. Marcucci, G., Pierangeli, D. & Conti, C. Theory of neuromorphic computing by waves: machine learning by rogue waves, dispersive shocks and solitons. Phys. Rev. Lett. 125, 093901 (2020).

    Google Scholar 

  112. Silva, N. A., Ferreira, T. D. & Guerreiro, A. Reservoir computing with solitons. New J. Phys. 23, 023013 (2021).

  113. Maksymov, I. S. & Pototsky, A. Reservoir computing based on solitary-like waves dynamics of liquid film flows: a proof of concept. Europhys. Lett. 142, 43001 (2023).

  114. Nakane, R., Hirose, A. & Tanaka, G. Spin waves propagating through a stripe magnetic domain structure and their applications to reservoir computing. Phys. Rev. Res. 3, 1–15 (2021).

    Google Scholar 

  115. Nakane, R., Hirose, A. & Tanaka, G. Performance enhancement of a spin-wave-based reservoir computing system utilizing different physical conditions. Phys. Rev. Appl. 19, 034047 (2023).

    Google Scholar 

  116. Gartside, J. C. et al. Reconfigurable training and reservoir computing in an artificial spin–vortex ice via spin–wave fingerprinting. Nat. Nanotechnol. 17, 460–469 (2022).

    Google Scholar 

  117. Zhu, R. et al. Information dynamics in neuromorphic nanowire networks. Sci. Rep. 11, 13047 (2021).

    Google Scholar 

  118. Vidamour, I. T. et al. Reconfigurable reservoir computing in a magnetic metamaterial. Commun. Phys. 6, 230 (2023).

    Google Scholar 

  119. Marković, D. et al. Reservoir computing with the frequency, phase and amplitude of spin–torque nano-oscillators. Appl. Phys. Lett. 114, 12409 (2019).

    Google Scholar 

  120. Sun, W. et al. 3D reservoir computing with high area efficiency (5.12 TOPS/mm2) implemented by 3D dynamic memristor array for temporal signal processing. In 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits) 222–223 (IEEE, 2022).

  121. Kuriki, Y., Nakayama, J., Takano, K. & Uchida, A. Impact of input mask signals on delay-based photonic reservoir computing with semiconductor lasers. Opt. Express 26, 5777–5788 (2018).

    Google Scholar 

  122. Appeltant, L., Van der Sande, G., Danckaert, J. & Fischer, I. Constructing optimized binary masks for reservoir computing with delay systems. Sci. Rep. 4, 3629 (2014).

    Google Scholar 

  123. LeCun, Y. The MNIST Database of Handwritten Digits (1998); http://yann.lecun.com/exdb/mnist/

  124. Yu, J. et al. Energy efficient and robust reservoir computing system using ultrathin (3.5 nm) ferroelectric tunneling junctions for temporal data learning. Proc. 2021 Symp. VLSI Technol. 2, 16–14 (2021).

    Google Scholar 

  125. Yao, P. et al. Fully hardware-implemented memristor convolutional neural network. Nature 577, 641–646 (2020).

    Google Scholar 

  126. Strukov, D. B., Snider, G. S., Stewart, D. R. & Williams, R. S. The missing memristor found. Nature 453, 80–83 (2008).

    Google Scholar 

  127. Jaeger, H. & Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless communication. Science 304, 78–80 (2004).

    Google Scholar 

  128. Stelzer, F., Rohm, A., Vicente, R., Fischer, I. & Yanchuk, S. Deep neural networks using a single neuron: folded-in-time architecture using feedback-modulated delay loops. Nat. Commun. 12, 5164 (2021).

    Google Scholar 

  129. Inubushi, M. & Yoshimura, K. Reservoir computing beyond memory-nonlinearity trade-off. Sci. Rep. 7, 10199 (2017).

    Google Scholar 

  130. Dambre, J., Verstraeten, D., Schrauwen, B. & Massar, S. Information processing capacity of dynamical systems. Sci. Rep. 2, 514 (2012).

    Google Scholar 

  131. Kubota, T., Takahashi, H. & Nakajima, K. Unifying framework for information processing in stochastically driven dynamical systems. Phys. Rev. Res. 3, 043135 (2021).

    Google Scholar 

  132. Vettelschoss, B., Rohm, A. & Soriano, M. C. Information processing capacity of a single-node reservoir computer: an experimental evaluation. IEEE Trans. Neural Netw. Learn. Syst. 33, 2714–2725 (2022).

    MathSciNet  Google Scholar 

  133. Akashi, N. et al. Input-driven bifurcations and information processing capacity in spintronics reservoirs. Phys. Rev. Res. 2, 043303 (2020).

    Google Scholar 

  134. Legenstein, R. & Maass, W. Edge of chaos and prediction of computational performance for neural circuit models. Neural Netw. 20, 323–334 (2007).

    Google Scholar 

  135. Dale, M., Miller, J. F., Stepney, S. & Trefzer, M. A. A substrate-independent framework to characterize reservoir computers. Proc. Math. Phys. Eng. Sci. 475, 20180723 (2019).

    MathSciNet  Google Scholar 

  136. Soriano, M. C. et al. Optoelectronic reservoir computing: tackling noise-induced performance degradation. Opt. Express 21, 12–20 (2013).

    Google Scholar 

  137. Atiya, A. F. & Parlos, A. G. New results on recurrent network training: unifying the algorithms and accelerating convergence. IEEE Trans. Neural Netw. 11, 697–709 (2000).

    Google Scholar 

  138. Bai, K. J. & Yi, Y. DFR: An energy-efficient analog delay feedback reservoir computing system for brain-inspired computing. ACM J. Emerg. Technol. Comput. Syst. 14, 1–22 (2018).

  139. Sun, J. et al. Novel nondelay-based reservoir computing with a single micromechanical nonlinear resonator for high-efficiency information processing. Microsyst. Nanoeng. 7, 83 (2021).

    Google Scholar 

  140. Dion, G., Mejaouri, S. & Sylvestre, J. Reservoir computing with a single delay-coupled non-linear mechanical oscillator. J. Appl. Phys. 124, 152132 (2018).

    Google Scholar 

  141. Donati, E. et al. Processing EMG signals using reservoir computing on an event-based neuromorphic system. In 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1–4 (IEEE, 2018).

  142. Kan, S., Nakajima, K., Asai, T. & Akai-Kasaya, M. Physical implementation of reservoir computing through electrochemical reaction. Adv. Sci. 9, e2104076 (2022).

    Google Scholar 

  143. Akashi, N. et al. A coupled spintronics neuromorphic approach for high-performance reservoir computing. Adv. Intell. Syst. 4, 2200123 (2022).

    Google Scholar 

  144. Moon, J., Wu, Y. & Lu, W. D. Hierarchical architectures in reservoir computing systems. Neuromorphic Comput. Eng. 1, 014006 (2021).

    Google Scholar 

  145. Gallicchio, C. & Micheli, A. in Reservoir Computing Natural Computing Series (eds Nakajima, K. & Fischer, I.) Ch. 4 (Springer, 2021).

  146. Gallicchio, C., Micheli, A. & Pedrelli, L. Deep reservoir computing: a critical experimental analysis. Neurocomputing 268, 87–99 (2017).

    Google Scholar 

  147. Wang, S. et al. Echo state graph neural networks with analogue random resistive memory arrays. Nat. Mach. Intell. 5, 104–113 (2023).

    Google Scholar 

  148. Gauthier, D. J., Bollt, E., Griffith, A. & Barbosa, W. A. S. Next generation reservoir computing. Nat. Commun. 12, 5564 (2021).

    Google Scholar 

  149. Li, Y. et al. Monolithic 3D integration of logic, memory and computing-in-memory for one-shot learning. In 2021 IEEE International Electron Devices Meeting (IEDM) 21.25.21–21.25.24 (IEEE, 2021).

  150. An, R. et al. A hybrid computing-in-memory architecture by monolithic 3D integration of BEOL CNT/IGZO-based CFET logic and analog RRAM. In 2022 International Electron Devices Meeting (IEDM) 18.11.11–18.11.14 (IEEE, 2022).

Download references

Acknowledgements

This work was in part supported by STI 2030-Major Projects 2022ZD0210200, the National Natural Science Foundation of China (92264201, 62025111 and 62104126) and the XPLORER Prize. X.L. is supported by the Shuimu Tsinghua Scholar Program of Tsinghua University.

Author information

Authors and Affiliations

Authors

Contributions

X.L. and J.T. conceived the idea and wrote the paper. All authors discussed and commented on the paper.

Corresponding author

Correspondence to Jianshi Tang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Cheol Seong Hwang, Hans Kleemann, Wei Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Fig. 1, Notes 1 and 2, and Tables 1–3.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, X., Tang, J., Zhong, Y. et al. Physical reservoir computing with emerging electronics. Nat Electron 7, 193–206 (2024). https://doi.org/10.1038/s41928-024-01133-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-024-01133-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing