Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A physicochemical-sensing electronic skin for stress response monitoring

Abstract

Approaches to quantify stress responses typically rely on subjective surveys and questionnaires. Wearable sensors can potentially be used to continuously monitor stress-relevant biomarkers. However, the biological stress response is spread across the nervous, endocrine and immune systems, and the capabilities of current sensors are not sufficient for condition-specific stress response evaluation. Here we report an electronic skin for stress response assessment that non-invasively monitors three vital signs (pulse waveform, galvanic skin response and skin temperature) and six molecular biomarkers in human sweat (glucose, lactate, uric acid, sodium ions, potassium ions and ammonium). We develop a general approach to prepare electrochemical sensors that relies on analogous composite materials for stabilizing and conserving sensor interfaces. The resulting sensors offer long-term sweat biomarker analysis of more than 100 h with high stability. We show that the electronic skin can provide continuous multimodal physicochemical monitoring over a 24-hour period and during different daily activities. With the help of a machine learning pipeline, we also show that the platform can differentiate three stressors with an accuracy of 98.0% and quantify psychological stress responses with a confidence level of 98.7%.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CARES for stress response monitoring.
Fig. 2: Design and characterization of highly robust multimodal sensors.
Fig. 3: On-body evaluation of the CARES in daily activities and under various types of physiological and psychological stressors.
Fig. 4: ML-powered stress response assessment.

Similar content being viewed by others

Data availability

The multimodal data collected by the CARES from human subjects is available at https://github.com/CARES-eskin/StressData. All other data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Kivimäki, M., Bartolomucci, A. & Kawachi, I. The multiple roles of life stress in metabolic disorders. Nat. Rev. Endocrinol. 19, 10–27 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Schneiderman, N., Ironson, G. & Siegel, S. D. Stress and health: psychological, behavioral, and biological determinants. Annu. Rev. Clin. Psychol. 1, 607–628 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kumar, A., Rinwa, P., Kaur, G. & Machawal, L. Stress: neurobiology, consequences and management. J. Pharm. Bioallied Sci. 5, 91–97 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Podsakoff, N. P., Freiburger, K. J., Podsakoff, P. M. & Rosen, C. C. Laying the foundation for the challenge–hindrance stressor framework 2.0. Annu. Rev. Organ. Psychol. Organ. Behav. 10, 165–199 (2023).

    Article  Google Scholar 

  5. Pfefferbaum, B. & North, C. S. Mental health and the COVID-19 pandemic. N. Engl. J. Med. 383, 510–512 (2020).

    Article  CAS  PubMed  Google Scholar 

  6. Santomauro, D. F. et al. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 398, 1700–1712 (2021).

    Article  Google Scholar 

  7. Gutshall, C. L., Hampton, D. P., Sebetan, I. M., Stein, P. C. & Broxtermann, T. J. The effects of occupational stress on cognitive performance in police officers. Police Pract. Res. 18, 463–477 (2017).

    Article  Google Scholar 

  8. Tomporowski, P. D. Effects of acute bouts of exercise on cognition. Acta Psychol. 112, 297–324 (2003).

    Article  Google Scholar 

  9. Martin, K. et al. The impact of environmental stress on cognitive performance: a systematic review. Hum. Factors 61, 1205–1246 (2019).

    Article  PubMed  Google Scholar 

  10. Robinson, S. J., Leach, J., Owen-Lynch, P. J. & Sünram-Lea, S. I. Stress reactivity and cognitive performance in a simulated firefighting emergency. Aviat. Space Environ. Med. 84, 592–599 (2013).

    Article  PubMed  Google Scholar 

  11. Haines, M. M., Stansfeld, S. A., Job, R. F. S., Berglund, B. & Head, J. Chronic aircraft noise exposure, stress responses, mental health and cognitive performance in school children. Psychol. Med. 31, 265–277 (2001).

    Article  CAS  PubMed  Google Scholar 

  12. Kulshreshtha, A. et al. Association of stress with cognitive function among older black and white US adults. JAMA Netw. Open 6, e231860 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Epel, E. S. et al. More than a feeling: a unified view of stress measurement for population science. Front. Neuroendocrinol. 49, 146–169 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Thapar, A., Eyre, O., Patel, V. & Brent, D. Depression in young people. Lancet 400, 617–631 (2022).

    Article  PubMed  Google Scholar 

  15. Topol, E. Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again (Basic Books, 2019).

  16. Herrman, H. et al. Time for united action on depression: a Lancet–World Psychiatric Association Commission. Lancet 399, 957–1022 (2022).

    Article  PubMed  Google Scholar 

  17. Drew, D. A. et al. Rapid implementation of mobile technology for real-time epidemiology of COVID-19. Science 368, 1362–1367 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  18. Charmandari, E., Tsigos, C. & Chrousos, G. Endocrinology of the stress response. Annu. Rev. Physiol. 67, 259–284 (2005).

    Article  CAS  PubMed  Google Scholar 

  19. Dolan, R. J. Emotion, cognition, and behavior. Science 298, 1191–1194 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Harker, M. Psychological sweating: a systematic review focused on aetiology and cutaneous response. Skin Pharmacol. Physiol. 26, 92–100 (2013).

    Article  CAS  PubMed  Google Scholar 

  21. Axelrod, J. & Reisine, T. D. Stress hormones: their interaction and regulation. Science 224, 452–459 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Acosta, J. N., Falcone, G. J., Rajpurkar, P. & Topol, E. J. Multimodal biomedical AI. Nat. Med. 28, 1773–1784 (2022).

    Article  CAS  PubMed  Google Scholar 

  23. Buergel, T. et al. Metabolomic profiles predict individual multidisease outcomes. Nat. Med. 28, 2309–2320 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Kim, D.-H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  27. Xu, C., Yang, Y. & Gao, W. Skin-interfaced sensors in digital medicine: from materials to applications. Matter 2, 1414–1445 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Niu, S. et al. A wireless body area sensor network based on stretchable passive tags. Nat. Electron. 2, 361–368 (2019).

    Article  Google Scholar 

  29. Gao, W. et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Article  CAS  PubMed  Google Scholar 

  33. Chesnut, M. et al. Stress markers for mental states and biotypes of depression and anxiety: a scoping review and preliminary illustrative analysis. Chronic Stress 5, 24705470211000338 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Xu, S., Kim, J., Walter, J. R., Ghaffari, R. & Rogers, J. A. Translational gaps and opportunities for medical wearables in digital health. Sci. Transl. Med. 14, eabn6036 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Torrente-Rodríguez, R. M. et al. Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, B. et al. Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring. Sci. Adv. 8, eabk0967 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sheibani, S. et al. Extended gate field-effect-transistor for sensing cortisol stress hormone. Commun. Mater. 2, 10 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Simmers, P., Li, S. K., Kasting, G. & Heikenfeld, J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J. Dermatol. Sci. 89, 40–51 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Sancini, A. & Tomei, F. Work related stress and blood glucose levels. Ann. Ig. 29, 123–133 (2017).

    CAS  PubMed  Google Scholar 

  40. Hermann, R., Lay, D., Wahl, P., Roth, W. T. & Petrowski, K. Effects of psychosocial and physical stress on lactate and anxiety levels. Stress 22, 664–669 (2019).

    Article  PubMed  Google Scholar 

  41. Kubera, B. et al. Rise in plasma lactate concentrations with psychosocial stress: a possible sign of cerebral energy demand. Obes. Facts 5, 384–392 (2012).

    Article  PubMed  Google Scholar 

  42. Klous, L., de Ruiter, C. J., Scherrer, S., Gerrett, N. & Daanen, H. A. M. The (in)dependency of blood and sweat sodium, chloride, potassium, ammonia, lactate and glucose concentrations during submaximal exercise. Eur. J. Appl. Physiol. 121, 803–816 (2021).

    Article  CAS  PubMed  Google Scholar 

  43. Goodman, A. M. et al. The hippocampal response to psychosocial stress varies with salivary uric acid level. Neuroscience 339, 396–401 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Nyein, H. Y. Y. et al. A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH. ACS Nano 10, 7216–7224 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Lin, S. et al. Wearable microneedle-based electrochemical aptamer biosensing for precision dosing of drugs with narrow therapeutic windows. Sci. Adv. 8, eabq4539 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Tu, J. et al. A wireless patch for the monitoring of C-reactive protein in sweat. Nat. Biomed. Eng. 7, 1293–1306 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Shao, Y., Ying, Y. & Ping, J. Recent advances in solid-contact ion-selective electrodes: functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 49, 4405–4465 (2020).

    Article  CAS  PubMed  Google Scholar 

  48. Spielberger, C. D., Gorsuch, R. L., Lushene, R. E., Vagg, P. R. & Jacobs, G. A. (eds) Manual for the State-trait Anxiety Inventory (STAI Form Y) (Consulting Psychologists Press, 1983).

  49. Frank, S. M. & Raja, S. N. Reflex cutaneous vasoconstriction during cold pressor test is mediated through α-adrenoceptors. Clin. Auton. Res. 4, 257–261 (1994).

    Article  CAS  PubMed  Google Scholar 

  50. Schwabe, L., Haddad, L. & Schachinger, H. HPA axis activation by a socially evaluated cold-pressor test. Psychoneuroendocrinology 33, 890–895 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Khambam, S. K. R., Naidu, M. U. R., Rani, P. U. & Rao, T. R. K. Effect of cold stimulation-induced pain on pharmacodynamic responses in healthy human volunteers. Int. J. Nutr. Pharmacol. Neurol. Dis. 2, 26 (2012).

    Article  CAS  Google Scholar 

  52. Buono, M. J., Lee, N. V. L. & Miller, P. W. The relationship between exercise intensity and the sweat lactate excretion rate. J. Physiol. Sci. 60, 103–107 (2010).

    Article  CAS  PubMed  Google Scholar 

  53. Maaten van der, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  54. Hay, E. L. & Diehl, M. Reactivity to daily stressors in adulthood: the importance of stressor type in characterizing risk factors. Psychol. Aging 25, 118–131 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Crestani, C. C. Emotional stress and cardiovascular complications in animal models: a review of the influence of stress type. Front. Physiol. 7, 251 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Pow, J., Lee-Baggley, D. & DeLongis, A. Threats to communion and agency mediate associations between stressor type and daily coping. Anxiety Stress Coping 29, 660–672 (2016).

    Article  PubMed  Google Scholar 

  57. Scheid, T. L. & Brown, T. N. (eds) Handbook for the Study of Mental Health: Social Contexts, Theories, and Systems. (Cambridge Univ. Press, 2009); https://doi.org/10.1017/CBO9780511984945

Download references

Acknowledgements

This work was funded by the Translational Research Institute for Space Health through NASA NNX16AO69A, Office of Naval Research grant nos. N00014-21-1-2483 and N00014-21-1-2845, Army Research Office grant no. W911NF-23-1-0041, National Institutes of Health grant nos. R01HL155815 and R21DK13266, National Science Foundation grant no. 2145802, National Academy of Medicine Catalyst Award and High Impact Pilot Research Award no. T31IP1666 from the Tobacco-Related Disease Research Program and Heritage Medical Research Institute (all to W.G.). T.K.H. acknowledges the support from National Institutes of Health grant nos. T32HL144449 and T32EB027629. C.X. acknowledges support from an Amazon AI4Science Fellowship. ICP-MS instrumentation at the Resnick Sustainability Institute’s Water and Environment Lab at the California Institute of Technology was used in this work with the assistance of N. Dalleska. We acknowledge critical support and infrastructure provided for this work by the Kavli Nanoscience Institute at Caltech and Center for Transmission Electron Microscopy at the University of California Irvine, and we thank M. Hunt and M. Xu for their help.

Author information

Authors and Affiliations

Authors

Contributions

W.G. and C.X. conceived the project. C.X. led the sensors and CARES platform development. C.X., Y.S. and J.R.S. led the platform characterization and human studies. S.A.S. and J.L. contributed to the data processing and feature extraction. H.Y.Y.N. contributed to sensor development. Y.Y., R.Y.T. and A.L. contributed to sensor characterization and testing. W.H. and J.M. contributed to wireless system development. T.K.H. and J.A.S. contributed to the human study design. W.G., C.X., Y.S., J.R.S. and S.A.S. cowrote the paper. All authors contributed to the data analysis and provided feedback on the manuscript.

Corresponding author

Correspondence to Wei Gao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Sihong Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–9, Tables 1–4, Figs. 1–48 and Videos 1 and 2.

Reporting Summary

Supplementary Video 1

The two-reservoir microfluidic module during an IP-induced sweat secretion process.

Supplementary Video 2

Multiplexed and multimodal data collection with real-life activities using the fully integrated wireless CARES patch.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, C., Song, Y., Sempionatto, J.R. et al. A physicochemical-sensing electronic skin for stress response monitoring. Nat Electron 7, 168–179 (2024). https://doi.org/10.1038/s41928-023-01116-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01116-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing