Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A ferroelectric-gate fin microwave acoustic spectral processor

Abstract

Wireless communication through dynamic spectrum allocation is essential to accommodate increasing data traffic. This requires massive arrays of radiofrequency filters for adaptive signal shaping at arbitrary frequencies. However, it is difficult to create massively integrated arrays using conventional filters based on planar acoustic resonators due to their large footprint and limited on-chip frequency scalability or intrinsic configurability. Here, we report a three-dimensional ferroelectric-gate fin nano-acoustic resonator that can be used to make spectral processors with high-frequency tailorability, large-scale and dense integrability, and intrinsic switchability. The ferroelectric-gate fins are created by growing atomic-layered ferroelectric hafnia-zirconia transducers on silicon nano-fins. The resonator generates bulk acoustic modes with scalable frequencies over 3–28 GHz (defined lithographically by the fin width) and provides a frequency–quality–electromechanical coupling product (f × Q × kt2) of 19.4 × 1010 Hz (at around 11 GHz). The voltage-controlled tuneability of the gate-transducer polarization also enables intrinsic configurability without the need for external switches. We used the approach to create a monolithic filter array, created by electrical coupling of ferroelectric-gate fins implemented on a single die, covering 9–12 GHz, providing dynamic configurability of the active passband and an isolation as large as 17 dB.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FGF nano-acoustic resonator concept and scaling characteristics.
Fig. 2: Three-dimensional and cross-sectional images of FGF acoustic resonators.
Fig. 3: Measured admittance of intrinsically switchable FGF nano-acoustic resonators.
Fig. 4: Images of implemented FGF filter array.
Fig. 5: Measured transmission response of intrinsically switchable FGF filter array.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

References

  1. Dang, S., Amin, O., Shihada, B. & Alouini, M. S. What should 6G be? Nat. Electron. 3, 20–29 (2020).

    Article  Google Scholar 

  2. Borkar, S. & Pande, H. Application of 5G next generation network to Internet of Things. In Proc. International Conference on Internet of Things and Applications (IOTA) 443–447 (IEEE, 2016).

  3. Wang, Y. et al. 5G mobile: spectrum broadening to higher-frequency bands to support high data rates. IEEE Veh. Technol. Mag. 9, 39–46 (2014).

    Article  Google Scholar 

  4. Watanabe, A. O., Ali, M., Sayeed, S. Y. B., Tummala, R. R. & Pulugurtha, M. R. A review of 5G front-end systems package integration. IEEE Trans. Compon. Packag. Manuf. Technol. 11, 118–133 (2021).

    Article  CAS  Google Scholar 

  5. Mahon, S. The 5G effect on RF filter technologies. IEEE Trans. Semicond. Manuf. 30, 494–499 (2017).

    Article  Google Scholar 

  6. Ruby, R. A snapshot in time: the future in filters for cell phones. IEEE Microw. Mag. 16, 46–59 (2015).

    Article  Google Scholar 

  7. Aigner, R. & Fattinger, G. 3G–4G–5G: how BAW filter technology enables a connected world. In Proc. 2019 20th International Conference on Solid-State Sensors, Actuators and Microsystems & Eurosensors XXXIII (Transducers & Eurosensors XXXIII) 523–526 (IEEE, 2019).

  8. Aigner, R. et al. BAW filters for 5G bands. In Proc. 2018 IEEE International Electron Devices Meeting (IEDM) 14.5.1–14.5.4 (IEEE, 2018)

  9. Kim, D. et al. Wideband 6 GHz RF filters for Wi-Fi 6E using a unique BAW process and highly Sc-doped AlN thin film. In Proc. 2021 IEEE MTT-S International Microwave Symposium (IMS) 207–209 (IEEE, 2021).

  10. Ahmad, W. S. H. M. W. et al. 5G technology: towards dynamic spectrum sharing using cognitive radio networks. IEEE Access 8, 14460–14488 (2020).

    Article  Google Scholar 

  11. Zhu, J. & Liu, K. J. R. Cognitive radios for dynamic spectrum access-dynamic spectrum sharing: a game theoretical overview. IEEE Commun. Mag. 45.5, 88–94 (2007).

    Google Scholar 

  12. Chih-Lin, I., Han, S. & Bian, S. Energy-efficient 5G for a greener future. Nat. Electron. 3, 182–184 (2020).

    Article  Google Scholar 

  13. Gómez-García, R. & Guyette, A. C. Reconfigurable multi-band microwave filters. IEEE Trans. Microw. Theory Tech. 63, 1294–1307 (2015).

    Article  ADS  Google Scholar 

  14. Marpaung, D., Yao, J. & Capmany, J. Integrated microwave photonics. Nat. Photonics 13, 80–90 (2019).

    Article  ADS  CAS  Google Scholar 

  15. Fandiño, J., Muñoz, P., Doménech, D. & Capmany, J. A monolithic integrated photonic microwave filter. Nat. Photonics 11, 124–129 (2017).

    Article  ADS  Google Scholar 

  16. Shahmohammadi, M., Dikbas, D., Harrington, B. P. & Abdolvand, R. Passive tuning in lateral-mode thin-film piezoelectric oscillators. In Proc. 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) 1–5 (IEEE, 2011).

  17. Norouzpour-Shirazi, A., Hodjat-Shamami, M., Tabrizian, R. & Ayazi, F. Dynamic tuning of MEMS resonators via electromechanical feedback. IEEE Trans. Ultrason., Ferroelectr. Freq. Control 62, 129–137 (2015).

    Article  PubMed  Google Scholar 

  18. Chandrahalim, H. et al. Influence of silicon on quality factor motional impedance and tuning range of PZT-transduced resonators. In Proc. 2008 Solid State Sensor, Actuator and Microsystems Workshop 360–363 (2008).

  19. Dabas, S., Mo, D., Rassay, S. & Tabrizian, R. Intrinsically tunable laminated ferroelectric scandium aluminum nitride extensional resonator based on local polarization switching. In Proc. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS) 1050–1053 (IEEE, 2022).

  20. Hirano, H. et al. Bandwidth-tunable SAW filter based on wafer-level transfer-integration of BaSrTiO3 film for wireless LAN system using TV white space. In Proc. 2014 IEEE International Ultrasonics Symposium 803–806 (IEEE, 2014).

  21. Hashimoto, K. -Y., Tanaka, S. & Esashi, M. Tunable RF SAW/BAW filters: dream or reality? In Proc. 2011 Joint Conference of the IEEE International Frequency Control and the European Frequency and Time Forum (FCS) 1–8 (IEEE, 2011).

  22. Balteanu, F. et al. 5G RF front end module architectures for mobile applications. In Proc. 2019 49th European Microwave Conference (EuMC) 252–255 (2019).

  23. Fichtner, S., Wolff, N., Lofink, F., Kienle, L. & Wagner, B. AlScN: a III–V semiconductor based ferroelectric. J. Appl. Phys. 125, 114103 (2019).

    Article  ADS  Google Scholar 

  24. Wang, J. et al. A film bulk acoustic resonator based on ferroelectric aluminum scandium nitride films. J. Microelectromech. Syst. 29, 741–747 (2020).

    Article  CAS  Google Scholar 

  25. Rassay, S. et al. Intrinsically switchable ferroelectric scandium aluminum nitride Lamb-mode resonators. IEEE Electron Device Lett. 42, 1065–1068 (2021).

    Article  ADS  CAS  Google Scholar 

  26. Mo, D., Dabas, S., Rassay, S. & Tabrizian, R. Complementary-switchable dual-mode SHF scandium aluminum nitride BAW resonator. IEEE Trans. Electron Devices 69, 4624–4631 (2022).

  27. Gund, V., Nomoto, K., Xing, H. G., Jena, D. & Lal, A. Intrinsically switchable GHz ferroelectric ScAlN SAW resonators. In Proc. 2022 IEEE International Symposium on Applications of Ferroelectrics (ISAF) 1–4 (IEEE, 2022).

  28. Mo, D., Rassay, S., Li, C. & Tabrizian, R. Intrinsically switchable dual‐band scandium‐aluminum nitride Lamb‐wave filter. Phys. Status Solidi (RRL)–Rapid Res. Lett. 16, 2200135 (2022).

    Article  ADS  CAS  Google Scholar 

  29. Ramezani, M., Ghatge, M. & Tabrizian, R. High kt2.Q silicon fin bulk acoustic resonators (FinBAR) for chip-scale multi-band spectrum analysis. In Proc. 2018 IEEE Micro Electro Mechanical Systems (MEMS) 158–161 (IEEE, 2018).

  30. Anderson, J., He, Y., Bahr, B. & Weinstein, D. Integrated acoustic resonators in commercial fin field-effect transistor technology. Nat. Electron. 5, 611–619 (2022).

    Article  CAS  Google Scholar 

  31. Hakim, F., Tharpe, T. & Tabrizian, R. Ferroelectric-on-Si super-high-frequency fin bulk acoustic resonators with Hf0.5Zr0.5O2 nanolaminated transducers. IEEE Microw. Wirel. Compon. Lett. 31, 701–704 (2021).

    Article  Google Scholar 

  32. Ghatge, M., Walters, G., Nishida, T. & Tabrizian, R. An ultrathin integrated nanoelectromechanical transducer based on hafnium zirconium oxide. Nat. Electron. 2, 506–512 (2019).

    Article  CAS  Google Scholar 

  33. He, Y., Bahr, B., Si, M., Ye, P. & Weinstein, D. A tunable ferroelectric based unreleased RF resonator. Microsyst. Nanoeng. 6, 8 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tharpe, T., Hershkovitz, E., Hakim, F., Kim, H. & Tabrizian, R. Nanoelectromechanical resonators for gigahertz frequency control based on hafnia–zirconia–alumina superlattices. Nat. Electron. 6, 599–609 (2023).

    Article  CAS  Google Scholar 

  35. Zou, J., Lin, C. M., Lam, C. S. & Pisano, A. P. Transducer design for AlN Lamb wave resonators. J. App. Phys. 121, 154502 (2007).

  36. Cheema, S. S. et al. Ultrathin ferroic HfO2–ZrO2 superlattice gate stack for advanced transistors. Nature 604, 65–71 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. Zheng, X. High quality factors in superlattice ferroelectric Hf0.5Zr0.5O2 nanoelectromechanical resonators. ACS Appl. Mater. Interfaces 14, 36807–36814 (2022).

    Article  CAS  PubMed  Google Scholar 

  38. Ghaffari, S. et al. Quantum limit of quality factor in silicon micro and nano mechanical resonators. Sci. Rep. 3, 3244 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Tabrizian, R., Rais-Zadeh, M. & Ayazi, F. Effect of phonon interactions on limiting the f.Q product of micromechanical resonators. In Proc. 2009 International Solid-State Sensors, Actuators and Microsystems Conference 2131–2134 (IEEE, 2009).

  40. Hakim, F., Ghatge M. & Tabrizian R. Excitation of high-frequency in-plane bulk acoustic resonance modes in geometrically engineered hafnium zirconium oxide nano-electro-mechanical membrane. Appl. Phys. Lett. 117, 063502 (2020).

  41. Abdolvand, R. & Ayazi, F. Enhanced power handling and quality factor in thin-film piezoelectric-on-substrate resonators. In Proc. 2007 IEEE Ultrasonics Symposium 608–611 (IEEE, 2007).

  42. Ghatge, M., Karri, P. & Tabrizian, R. Power-insensitive silicon crystal-cut for amplitude-stable frequency synthesis. In Proc. 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS) 76–79 (IEEE, 2017).

  43. Ruby R. Review and comparison of bulk acoustic wave FBAR, SMR technology. In Proc. 2007 IEEE Ultrasonics Symposium 1029–1040 (IEEE, 2007).

  44. Miller, J. M. L. et al. Effective quality factor tuning mechanisms in micromechanical resonators. Appl. Phys. Rev. 5, 041307 (2018).

    Article  ADS  Google Scholar 

  45. Tanskaya T. N., Zima V. N. & Kozlov A. G. The influence of surface roughness of Bragg reflector layers on characteristics of microwave solidly mounted resonator. In Proc. 2015 International Siberian Conference on Control and Communications (SIBCON) 1–4 (IEEE, 2015).

  46. Vorobiev, A., Gevorgian, S., Löffler, M. & Olsson, E. Correlations between microstructure and Q-factor of tunable thin film bulk acoustic wave resonators. J. Appl. Phys. 110, 054102 (2011).

    Article  ADS  Google Scholar 

  47. Ramezani, M., Felmetsger, V. V., Rudawski, N. G. & Tabrizian, R. Growth of C-axis textured AlN films on vertical sidewalls of silicon microfins. Trans. Ultrason. Ferroelectr. Freq. Control 68, 753–759 (2021).

    Article  Google Scholar 

  48. Martin, F. et al. Shear mode coupling and tilted grain growth of AlN thin films in BAW resonators. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53, 1339–1343 (2006).

    Article  PubMed  Google Scholar 

  49. Tharpe, T., Zheng, X. Q., Feng, P. X. L. & Tabrizian, R. Resolving mechanical properties and morphology evolution of free‐standing ferroelectric Hf0.5Zr0.5O2. Adv. Eng. Mater. 23, 2101221 (2021).

    Article  CAS  Google Scholar 

  50. Fields, S. S. et al. Compositional and phase dependence of elastic modulus of crystalline and amorphous Hf1-xZrxO2 thin films. Appl. Phys. Lett. 118, 102901 (2021).

    Article  ADS  CAS  Google Scholar 

  51. Mart, C. et al. Piezoelectric response of polycrystalline silicon‐doped hafnium oxide thin films determined by rapid temperature cycles. Adv. Electron. Mater. 6, 1901015 (2020).

    Article  CAS  Google Scholar 

  52. Mikolajick, T. S. et al. Next generation ferroelectric materials for semiconductor process integration and their applications. J. Appl. Phys. 129, 100901 (2021).

    Article  ADS  CAS  Google Scholar 

  53. Feld, D. A., Parker, R., Ruby, R., Bradley, P. & Dong, S. After 60 years: a new formula for computing quality factor is warranted. In Proc. 2008 IEEE Ultrasonics Symposium 431–436 (IEEE, 2008).

  54. Lu, R., Li, M.-H., Yang, Y., Manzaneque, T. & Gong, S. Accurate extraction of large electromechanical coupling in piezoelectric MEMS resonators. J. Microelectromech. Syst. 28, 209–218 (2019).

    Article  CAS  Google Scholar 

  55. Zobel, O. J. Theory and design of uniform and composite electric wave filters. Bell Syst. Tech. J. 2, 1–46 (1923).

    Article  Google Scholar 

  56. Psychogiou, D., Gómez-García, R. & Peroulis, D. Single and multiband acoustic-wave-lumped-element-resonator (AWLR) bandpass filters with reconfigurable transfer function. IEEE Trans. Microw. Theory Tech. 64, 4394–4404 (2016).

    Article  ADS  Google Scholar 

  57. Gao, A., Liu, K., Liang, J. & Wu, T. AlN MEMS filters with extremely high bandwidth widening capability. Microsyst. Nanoeng. 6, 74 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  58. Ghatge, M. & Tabrizian, R. Dispersion-engineered guided-wave resonators in anisotropic single-crystal substrates—part I: concept and analytical design. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 1140–1148 (2019).

    Article  Google Scholar 

  59. Ghatge, M., Ramezani, M. & Tabrizian, R. Dispersion-engineered guided-wave resonators in anisotropic single-crystal substrates—part II: numerical and experimental characterization. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 66, 1149–1154 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We thank T. Hancock for technical discussions and support of this effort, and the University of Florida Nanoscale Research Facility cleanroom staff for fabrication support. F.H., T.T. and R.T. acknowledge the financial support from the Defense Advanced Research Projects Agency through the Young Faculty Award (grant no. D19AP00044) and National Science Foundation through the CAREER award (grant no. ECCS-1752206). The Herbert Wertheim College of Engineering Research Service Centers is acknowledged for use of the FEI Helios G4 CXe dual plasma focused ion beam–scanning electron microscope and FEI Themis Z scanning-transmission electron microscope.

Author information

Authors and Affiliations

Authors

Contributions

F.H. and R.T. designed, fabricated and measured FGF resonators and filters. T.T. and F.H. fabricated and characterized the ferroelectric transducer. N.G.R. prepared samples for imaging and performed STEM characterization. N.G.R., F.H. and T.T. characterized crystallinity and structure of the ferroelectric transducer. R.T. supervised the project and provided guidance throughout the process. All authors participated in analysing the results and contributed to writing the paper. All authors have given approval to the final version of the paper.

Corresponding author

Correspondence to Roozbeh Tabrizian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Shuji Tanaka, Yao Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Sections 1–8, Figs. 1–8 and Tables 1–4.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hakim, F., Rudawski, N.G., Tharpe, T. et al. A ferroelectric-gate fin microwave acoustic spectral processor. Nat Electron 7, 147–156 (2024). https://doi.org/10.1038/s41928-023-01109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01109-5

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing