Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Monolayer black phosphorus and germanium arsenide transistors via van der Waals channel thinning

Abstract

Two-dimensional (2D) semiconductors can potentially be used to create scaled electronic devices. However, for a number of promising 2D materials—such as black phosphorus and germanium arsenide—the fabrication of monolayer transistors is challenging and is limited by the difficulties in forming robust electrical contacts with the delicate 2D materials. Here, we report the fabrication of monolayer black phosphorus and germanium arsenide transistors with three-dimensional raised contacts using a van der Waals peeling technique. Through layer-by-layer mechanical peeling, the channel region of a multilayer black phosphorus transistor can be gradually reduced to monolayer thickness without degrading its delicate lattice and while retaining a multilayer contact region. Using the technique, we measure the electrical properties of the same 2D transistor with different channel thicknesses. We find that the carrier mobility of black phosphorus drops sharply when reducing body thickness, behaving more like a conventional bulk semiconductor rather than a pure van der Waals semiconductor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Fabrication processes for vdW peeling of BP.
Fig. 2: Construction of homo-junctions and homo-superlattices for various 2D semiconductors.
Fig. 3: In situ electrical measurement of BP transistors with layer-by-layer channel thinning.
Fig. 4: Monolayer 2D transistors with 3D raised contact.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  2. Wu, R. et al. Bilayer tungsten diselenide transistors with on-state currents exceeding 1.5 milliamperes per micrometre. Nat. Electron. 5, 497–504 (2022).

    Article  CAS  Google Scholar 

  3. Desai, S. B. et al. MoS2 transistors with 1-nanometer gate lengths. Science 354, 99–102 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Li, M. Y., Su, S. K., Wong, H. S. P. & Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Uchida, K. & Takagi, S.-I. Carrier scattering induced by thickness fluctuation of silicon-on-insulator film in ultrathin-body metal–oxide–semiconductor field-effect transistors. Appl. Phys. Lett. 82, 2916–2918 (2003).

    Article  ADS  CAS  Google Scholar 

  6. Uchida, K. et al. Experimental study on carrier transport mechanism in ultrathin-body SOI n- and p-MOSFETs with SOI thickness less than 5 nm. In Digest. International Electron Devices Meeting, 47–50 (IEEE, 2002).

  7. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Liu, Y., Duan, X., Huang, Y. & Duan, X. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 47, 6388–6409 (2018).

    Article  CAS  PubMed  Google Scholar 

  9. Guo, J. et al. Few-layer GeAs field-effect transistors and infrared photodetectors. Adv. Mater. 30, 1705934 (2018).

    Article  ADS  Google Scholar 

  10. Liu, H. et al. Phosphorene: an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Li, L. et al. Direct observation of the layer-dependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).

    Article  ADS  PubMed  Google Scholar 

  12. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Liu, L. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 4, 342–347 (2021).

    Article  CAS  Google Scholar 

  14. Li, W. et al. Realization of ultra-scaled MoS2 vertical diodes via double-side electrodes lamination. Nano Lett. 22, 4429–4436 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Liu, Y. et al. Approaching the Schottky-Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Liu, Y., Huang, Y. & Duan, X. Van der Waals integration before and beyond two-dimensional materials. Nature 567, 323–333 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Jung, Y. et al. Transferred via contacts as a platform for ideal two-dimensional transistors. Nat. Electron. 2, 187–194 (2019).

    Article  Google Scholar 

  18. Song, W. et al. High-resolution van der Waals stencil lithography for 2D transistors. Small 17, 2101209 (2021).

    Article  CAS  Google Scholar 

  19. Gusmao, R., Sofer, Z. & Pumera, M. Black phosphorus rediscovered: from bulk material to monolayers. Angew. Chem. Int. Ed. 56, 8052–8072 (2017).

    Article  CAS  Google Scholar 

  20. Kim, S. et al. Thickness-controlled black phosphorus tunnel field-effect transistor for low-power switches. Nat. Nanotechnol. 15, 203–206 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Choi, Y. K. et al. Ultrathin-body SOI MOSFET for deep-sub-tenth micron era. IEEE Electron Device Lett. 21, 254–255 (2000).

    Article  ADS  CAS  Google Scholar 

  22. Kolahdouz, M. et al. Selective epitaxial growth with full control of pattern dependency behavior for pMOSFET structures. J. Electrochem. Soc. 156, H169–H171 (2009).

    Article  CAS  Google Scholar 

  23. Hsiang-Jen, H. et al. Reduction of source/drain series resistance and its impact on device performance for PMOS transistors with raised Si1-x/Gex source/drain. IEEE Electron Device Lett. 21, 448–450 (2000).

    Article  ADS  Google Scholar 

  24. Barraud, S. et al. Enhanced performance of P-FET omega-gate SoI nanowire with recessed-SiGe source-drain down to 13-nm gate length. IEEE Electron Device Lett. 34, 1103–1105 (2013).

    Article  ADS  CAS  Google Scholar 

  25. Liu, Y. et al. Layer-by-layer thinning of MoS2 by plasma. ACS Nano 7, 4202–4209 (2013).

    Article  CAS  PubMed  Google Scholar 

  26. Lu, W. et al. Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014).

    Article  CAS  Google Scholar 

  27. Jia, J. et al. Plasma-treated thickness-controlled two-dimensional black phosphorus and its electronic transport properties. ACS Nano 9, 8729–8736 (2015).

    Article  CAS  PubMed  Google Scholar 

  28. Hu, L. et al. Laser thinning and patterning of MoS2 with layer-by-layer precision. Sci. Rep. 7, 15538 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  29. Liu, X. et al. Scanning probe nanopatterning and layer-by-layer thinning of black phosphorus. Adv. Mater. 29, 1604121 (2017).

    Article  Google Scholar 

  30. Sun, J. et al. A scalable method for thickness and lateral engineering of 2D materials. ACS Nano 14, 4861–4870 (2020).

    Article  CAS  PubMed  Google Scholar 

  31. Li, Z. et al. Dry exfoliation of large-area 2D monolayer and heterostructure arrays. ACS Nano 15, 13839–13846 (2021).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  32. Quhe, R. et al. Black phosphorus transistors with van der Waals-type electrical contacts. Nanoscale 9, 14047–14057 (2017).

    Article  CAS  PubMed  Google Scholar 

  33. Wang, C. H. et al. Unipolar n-type black phosphorus transistors with low work function contacts. Nano Lett. 18, 2822–2827 (2018).

    Article  ADS  CAS  PubMed  Google Scholar 

  34. Jiang, B. et al. Impact of thickness on contact issues for pinning effect in black phosphorus field-effect transistors. Adv. Funct. Mater. 28, 1801398 (2018).

    Article  Google Scholar 

  35. Jiao, H. et al. HgCdTe/black phosphorus van der Waals heterojunction for high-performance polarization-sensitive midwave infrared photodetector. Sci. Adv. 8, eabn1811 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Wu, Z. et al. Large-scale growth of few-layer two-dimensional black phosphorus. Nat. Mater. 20, 1203–1209 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  37. He, T. et al. Etching techniques in 2D materials. Adv. Mater. Technol. 4, 1900064 (2019).

    Article  CAS  Google Scholar 

  38. Wang, L. et al. Pronounced photovoltaic effect in electrically tunable lateral black-phosphorus heterojunction diode. Adv. Electron. Mater. 4, 1700442 (2018).

    Article  Google Scholar 

  39. Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Velicky, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Pei, J. et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang, F. et al. Prediction of hyperbolic exciton-polaritons in monolayer black phosphorus. Nat. Commun. 12, 5628 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gaddemane, G. et al. Theoretical studies of electronic transport in monolayer and bilayer phosphorene: a critical overview. Phys. Rev. B 98, 115416 (2018).

    Article  ADS  CAS  Google Scholar 

  45. Qiao, J. et al. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Luo, X. et al. Large frequency change with thickness in interlayer breathing mode—significant interlayer interactions in few Layer black phosphorus. Nano Lett. 15, 3931–3938 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  47. Charlier, J. C., Gonze, X. & Michenaud, J. P. Graphite interplanar bonding: electronic delocalization and van der Waals interaction. Europhys. Lett. 28, 403–408 (1994).

    Article  ADS  CAS  Google Scholar 

  48. Bjorkman, T., Gulans, A., Krasheninnikov, A. V. & Nieminen, R. M. van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108, 235502 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Dong, S. et al. Ultralow-frequency collective compression mode and strong interlayer coupling in multilayer black phosphorus. Phys. Rev. Lett. 116, 087401 (2016).

    Article  ADS  PubMed  Google Scholar 

  50. Hu, Z. X. et al. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 8, 2740–2750 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Zhou, L., Guo, Y. & Zhao, J. GeAs and SiAs monolayers: novel 2D semiconductors with suitable band structures. Physica E 95, 149–153 (2018).

    Article  ADS  CAS  Google Scholar 

  52. Lee, K. et al. GeAs: highly anisotropic van der Waals thermoelectric material. Chem. Mater. 28, 2776–2785 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key R&D Programme of China (Grant No. 2018YFA0703700 and No. 2021YFA1200503) and from the National Natural Science Foundation of China (Grant Nos. 51991340, 51991341, 61874041 and 91964203).

Author information

Authors and Affiliations

Authors

Contributions

Y.L. conceived the research. Y.L. and J.H. designed the experiments. W.L. performed the sample fabrication and device measurement. Q.T., Z. Lu, G.Y. and Z. Li contributed to the data analysis. Y.C., Y.Wang, Y.Wen, L.L. and J.H. contributed to AFM and optical characterization. Y.L. and W.L. co-wrote the paper. All authors discussed the results and commented on the paper.

Corresponding authors

Correspondence to Yuan Liu or Jun He.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1 and Figs. 1–10.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Tao, Q., Li, Z. et al. Monolayer black phosphorus and germanium arsenide transistors via van der Waals channel thinning. Nat Electron 7, 131–137 (2024). https://doi.org/10.1038/s41928-023-01087-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01087-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing