Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Field-free switching of perpendicular magnetization at room temperature using out-of-plane spins from TaIrTe4

Abstract

The development of spintronic devices based on spin–orbit torque requires the electrical-current-driven field-free switching of magnetization in materials with perpendicular magnetic anisotropy. However, approaches to achieve such switching typically require additional magnetic layers or structural engineering, which complicates fabrication processes and impedes the scalability and stability of devices. Here we report the field-free switching of the perpendicular magnetic anisotropy ferromagnet cobalt iron boron at room temperature using out-of-plane spin-polarized current generated by the Weyl semimetal tantalum iridium telluride (TaIrTe4). Bilinear magnetoelectric resistance and spin-torque ferromagnetic resonance measurements confirm the out-of-plane polarized spins, and the out-of-plane spin canting angle is estimated to be around 8°. The spin Hall conductivity of TaIrTe4 is estimated to be 5.44 × 104 × ћ/2e (Ω m)−1, which is almost one order of magnitude larger than that of tungsten ditelluride. Our results indicate that TaIrTe4 is an efficient spin current source for field-free spin–orbit torque applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal characterization and BMR results.
Fig. 2: ST-FMR measurements.
Fig. 3: Field-free switching of PMA heterostructures.
Fig. 4: Macrospin simulations.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes that support this study are available from the corresponding author upon reasonable request.

References

  1. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Google Scholar 

  2. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Google Scholar 

  3. Shao, Q. et al. Roadmap of spin-orbit torques. IEEE Trans. Magn. 57, 800439 (2021).

    Google Scholar 

  4. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Google Scholar 

  5. Lau, Y.-C., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin-orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758–762 (2016).

    Google Scholar 

  6. Oh, Y.-W. et al. Field-free switching of perpendicular magnetization through spin-orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    Google Scholar 

  7. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin-orbit torque in an antiferromagnet-ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Google Scholar 

  8. van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Google Scholar 

  9. Yu, G. et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014).

    Google Scholar 

  10. Safeer, C. K. et al. Spin-orbit torque magnetization switching controlled by geometry. Nat. Nanotechnol. 11, 143–146 (2016).

    Google Scholar 

  11. Liu, L. et al. Current-induced magnetization switching in all-oxide heterostructures. Nat. Nanotechnol. 14, 939–944 (2019).

    Google Scholar 

  12. Kong, W. J. et al. Spin–orbit torque switching in a T-type magnetic configuration with current orthogonal to easy axes. Nat. Commun. 10, 233 (2019).

    Google Scholar 

  13. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    MathSciNet  Google Scholar 

  14. Ramaswamy, R., Lee, J. M., Cai, K. & Yang, H. Recent advances in spin-orbit torques: moving towards device applications. Appl. Phys. Rev. 5, 031107 (2018).

    Google Scholar 

  15. MacNeill, D. et al. Control of spin-orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    Google Scholar 

  16. Macneill, D. et al. Thickness dependence of spin-orbit torques generated by WTe2. Phys. Rev. B 96, 054450 (2017).

    Google Scholar 

  17. Baek, S. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    Google Scholar 

  18. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii-Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    Google Scholar 

  19. Shi, S. et al. Observation of the out-of-plane polarized spin current from CVD grown WTe2. Adv. Quantum Technol. 4, 2100038 (2021).

    Google Scholar 

  20. Liu, L. et al. Symmetry-dependent field-free switching of perpendicular magnetization. Nat. Nanotechnol. 16, 277–282 (2021).

    Google Scholar 

  21. Chen, X. et al. Observation of the antiferromagnetic spin Hall effect. Nat. Mater. 20, 800–804 (2021).

    Google Scholar 

  22. Kao, I.-H. et al. Deterministic switching of a perpendicularly polarized magnet using unconventional spin-orbit torques in WTe2. Nat. Mater. 21, 1029–1034 (2022).

    Google Scholar 

  23. Hu, S. et al. Efficient field-free perpendicular magnetization switching by a magnetic spin Hall effect. Nat. Commun. 13, 4447 (2022).

    Google Scholar 

  24. Zhao, B. et al. Unconventional charge-spin conversion in Weyl-semimetal WTe2. Adv. Mater. 32, 2000818 (2020).

    Google Scholar 

  25. Zhao, B. et al. Observation of charge to spin conversion in Weyl semimetal WTe2 at room temperature. Phys. Rev. Research 2, 013286 (2020).

    Google Scholar 

  26. Xie, Q. et al. Field-free magnetization switching induced by the unconventional spin-orbit torque from WTe2. APL Mater. 9, 051114 (2021).

    Google Scholar 

  27. Liu, L., Moriyama, T., Ralph, D. C. & Buhrman, R. A. Spin-torque ferromagnetic resonance induced by the spin Hall effect. Phys. Rev. Lett. 106, 036601 (2011).

    Google Scholar 

  28. Wang, Y., Deorani, P., Qiu, X., Kwon, J. H. & Yang, H. Determination of intrinsic spin Hall angle in Pt. Appl. Phys. Lett. 105, 152412 (2014).

    Google Scholar 

  29. Koepernik, K. et al. TaIrTe4: a ternary type-II Weyl semimetal. Phys. Rev. B 93, 201101(R) (2016).

    Google Scholar 

  30. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    Google Scholar 

  31. Liu, Y. et al. Raman signatures of broken inversion symmetry and in-plane anisotropy in type-II Weyl semimetal candidate TaIrTe4. Adv. Mater. 30, 1706402 (2018).

    Google Scholar 

  32. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    Google Scholar 

  33. Guimarães, M. H. D., Stiehl, G. M., MacNeill, D., Reynolds, N. D. & Ralph, D. C. Spin-orbit torques in NbSe2/permalloy bilayers. Nano Lett. 18, 1311–1316 (2018).

    Google Scholar 

  34. Safeer, C. K. et al. Room-temperature spin Hall effect in graphene van der Waals heterostructures. Nano Lett. 19, 1074–1082 (2019).

    Google Scholar 

  35. Liang, S. et al. Spin-orbit torque magnetization switching in MoTe2/permalloy heterostructures. Adv. Mater. 32, 2002799 (2020).

    Google Scholar 

  36. Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β-MoTe2. Phys. Rev. B 100, 184402 (2019).

    Google Scholar 

  37. Han, J. et al. Room-temperature spin-orbit torque switching induced by a topological insulator. Phys. Rev. Lett. 119, 077702 (2017).

    Google Scholar 

  38. Wang, Y. et al. Room temperature magnetization switching in topological insulator-ferromagnet heterostructures by spin-orbit torques. Nat. Commun. 8, 1364 (2017).

    Google Scholar 

  39. Xu, H. et al. High spin Hall conductivity in large-area type-II Dirac semimetal PtTe2. Adv. Mater. 32, 2000513 (2020).

    Google Scholar 

  40. Pai, C.-F., Mann, M., Tan, A. J. & Beach, G. S. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys. Rev. B 93, 144409 (2016).

    Google Scholar 

  41. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Google Scholar 

  42. Iihama, S. et al. Gilbert damping constants of Ta/CoFeB/MgO(Ta) thin films measured by optical detection of precessional magnetization dynamics. Phys. Rev. B 89, 174416 (2014).

    Google Scholar 

Download references

Acknowledgements

This work was supported by SpOT-LITE program (A*STAR grant, A18A6b0057) through RIE2020 funds; Samsung Electronics (IO221024-03172-01); National Natural Science Foundation of China (nos. 22175203 and 22006023); Natural Science Foundation of Guangdong Province (nos. 2022B1515020065 and 2019A1515010428); and Plan Fostering Project of the State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University (no. OEMT-2021-PZ-02). We would like to acknowledge that the simulation work involved in this research is partially supported by NUS Information Technology’s High Performance Computing.

Author information

Authors and Affiliations

Authors

Contributions

Y.L., D.K. and H.Y. designed the experiment. Y.L. fabricated the devices and analysed the data with the help of G.S., D.K. and F.W. Y.L. performed the BMR and switching measurements. G.S. and S.S. performed the ST-FMR measurement. T.K., Y.L., G.S. and K.C. performed the simulations. D.Y. performed the Raman measurements. C.Z. and Y.P. helped in the device fabrication for rebuttal. S.Y. deposited the PMA layer. J.Z. and P.Y. provided the single crystals of TaIrTe4. All authors discussed the results and commented on the manuscript. Y.L., G.S., T.K., D.K. and H.Y. wrote the manuscript. H.Y. initiated the idea and led the project.

Corresponding author

Correspondence to Hyunsoo Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Saroj Dash, Hai-Zhou Lu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–15, Figs. 1–19 and Table 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Shi, G., Kumar, D. et al. Field-free switching of perpendicular magnetization at room temperature using out-of-plane spins from TaIrTe4. Nat Electron 6, 732–738 (2023). https://doi.org/10.1038/s41928-023-01039-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01039-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing