Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

High-performance metal halide perovskite transistors

Abstract

Advances in metal halide perovskite semiconductors for optoelectronic devices have revived research interest in their applicability in transistors. Despite initial challenges affecting perovskite-based transistors in terms of reproducibility and ambient-temperature operation capability, notable performance improvements have been achieved through the fine-tuning of channel material compositions, thin-film processing and device engineering. However, critical insight into the electrical properties of the materials is lacking, and their potential for application in large-area and microscale electronics remains unclear. Here we explore the development of metal halide perovskite transistors and compare their characteristics with those of mainstream semiconductor technologies. We examine the electronic and structural properties of halide perovskites, and discuss key perovskite transistors developed so far, focusing on defect chemistry and corresponding electrical properties. We also consider the challenges that exist in developing next-generation electronics and circuits with perovskites, and highlight potential research areas for future development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Evolution of halide perovskite FETs.
Fig. 2: Electronic properties of halide perovskites.
Fig. 3: Electrical characterization and defect chemistry of Pb2+/Sn2+ perovskite FETs.
Fig. 4: Roadmap of perovskite FET development.

Similar content being viewed by others

References

  1. Manser, J. S., Christians, J. A. & Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 116, 12956–13008 (2016).

    Article  Google Scholar 

  2. Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    Article  Google Scholar 

  3. Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).

    Article  Google Scholar 

  4. Liu, A., Zhu, H. & Noh, Y.-Y. Solution-processed inorganic p-channel transistors: recent advances and perspectives. Mater. Sci. Eng. R 135, 85–100 (2019).

    Article  Google Scholar 

  5. Kagan, C., Mitzi, D. & Dimitrakopoulos, C. Organic–inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999). This paper pioneered the metal halide perovksite transistor.

    Article  Google Scholar 

  6. Matsushima, T. et al. Solution-processed organic–inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28, 10275–10281 (2016).

    Article  Google Scholar 

  7. Zhu, H. et al. High-performance and reliable lead-free layered-perovskite transistors. Adv. Mater. 32, 2002717 (2020).

    Article  Google Scholar 

  8. Gao, Y. et al. Highly stable lead-free perovskite field-effect transistors incorporating linear π-conjugated organic ligands. J. Am. Chem. Soc. 141, 15577–15585 (2019). This paper reported the air-stable Sn2+ perovskite transistor using molecule engineering.

    Article  Google Scholar 

  9. Liang, A. et al. Ligand-driven grain engineering of high mobility two-dimensional perovskite thin-film transistors. J. Am. Chem. Soc. 143, 15215–15223 (2021).

    Article  Google Scholar 

  10. Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A. & Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015).

    Article  Google Scholar 

  11. Mei, Y., Zhang, C., Vardeny, Z. V. & Jurchescu, O. D. Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Commun. 5, 297–301 (2015).

    Article  Google Scholar 

  12. Labram, J. G. et al. Temperature-dependent polarization in field-effect transport and photovoltaic measurements of methylammonium lead iodide. J. Phys. Chem. Lett. 6, 3565–3571 (2015).

    Article  Google Scholar 

  13. Li, D. et al. Size-dependent phase transition in methylammonium lead iodide perovskite microplate crystals. Nat. Commun. 7, 11330 (2016).

    Article  Google Scholar 

  14. Senanayak, S. P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

    Article  Google Scholar 

  15. Pininti, A. R., Ball, J. M., Albaqami, M. D., Petrozza, A. & Caironi, M. Time-dependent field effect in three-dimensional lead-halide perovskite semiconductor thin films. ACS Appl. Energy Mater. 4, 10603–10609 (2021).

    Article  Google Scholar 

  16. She, X.-J. et al. A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nat. Electron. 3, 694–703 (2020). This paper demonstrated state-of-the-art Pb-based perovskite transistors.

    Article  Google Scholar 

  17. Li, Z. et al. Understanding the role of grain boundaries on charge-carrier and ion transport in Cs2AgBiBr6 thin films. Adv. Funct. Mater. 31, 2104981 (2021).

    Article  Google Scholar 

  18. Shao, S. et al. Field-effect transistors based on formamidinium tin triiodide perovskite. Adv. Funct. Mater. 31, 2008478 (2021).

    Article  Google Scholar 

  19. Kim, J. et al. High-performance p-channel tin halide perovskite thin film transistor utilizing a 2D–3D core–shell structure. Adv. Sci. 9, 2104993 (2022).

    Article  Google Scholar 

  20. Liu, A. et al. Modulation of vacancy-ordered double perovskite Cs2SnI6 for air-stable thin-film transistors. Cell Rep. Phys. Sci. 3, 100812 (2022).

    Article  Google Scholar 

  21. Liu, A. et al. High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022). This paper proposed and demonstrated high-performance perovskite transistors.

    Article  Google Scholar 

  22. Akkerman, Q. A. & Manna, L. What defines a halide perovskite? ACS Energy Lett. 5, 604–610 (2020).

    Article  Google Scholar 

  23. Wang, K., Yang, D., Wu, C., Sanghadasa, M. & Priya, S. Recent progress in fundamental understanding of halide perovskite semiconductors. Prog. Mater. Sci. 106, 100580 (2019).

    Article  Google Scholar 

  24. Brandt, R. E., Stevanović, V., Ginley, D. S. & Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: beyond hybrid lead halide perovskites. MRS Commun. 5, 265–275 (2015).

    Article  Google Scholar 

  25. Kurchin, R. C., Gorai, P., Buonassisi, T. & Stevanović, V. Structural and chemical features giving rise to defect tolerance of binary semiconductors. Chem. Mater. 30, 5583–5592 (2018).

    Article  Google Scholar 

  26. Tang, G. & Hong, J. Direct tuning of the band gap via electronically-active organic cations and large piezoelectric response in one-dimensional hybrid halides from first-principles. J. Mater. Chem. C 6, 7671–7676 (2018).

    Article  Google Scholar 

  27. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017). This paper provided insightful discussion on the charge transport of halide perovskite semiconductors.

    Article  Google Scholar 

  28. Chakraborty, S. et al. Rational design: a high-throughput computational screening and experimental validation methodology for lead-free and emergent hybrid perovskites. ACS Energy Lett. 2, 837–845 (2017).

    Article  Google Scholar 

  29. Meggiolaro, D., Ricciarelli, D., Alasmari, A. A., Alasmary, F. A. S. & De Angelis, F. Tin versus lead redox chemistry modulates charge trapping and self-doping in tin/lead iodide perovskites. J. Phys. Chem. Lett. 11, 3546–3556 (2020). This paper discussed different defect chemistry between Sn2+ and Pb perovskites.

    Article  Google Scholar 

  30. Motti, S. G. et al. Defect activity in lead halide perovskites. Adv. Mater. 31, 1901183 (2019).

    Article  Google Scholar 

  31. Akkerman, Q. A., Rainò, G., Kovalenko, M. V. & Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 17, 394–405 (2018).

    Article  Google Scholar 

  32. Yamada, Y. & Kanemitsu, Y. Electron–phonon interactions in halide perovskites. NPG Asia Mater. 14, 48 (2022). This paper provided insightful discussion on the electron–phonon interactions in halide perovskites.

    Article  Google Scholar 

  33. Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  Google Scholar 

  34. Zhu, X. Y. & Podzorov, V. Charge carriers in hybrid organic–inorganic lead halide perovskites might be protected as large polarons. J. Phys. Chem. Lett. 6, 4758–4761 (2015).

    Article  Google Scholar 

  35. Wuttig, M. et al. Halide perovskites: advanced photovoltaic materials empowered by a unique bonding mechanism. Adv. Funct. Mater. 32, 2110166 (2022).

    Article  Google Scholar 

  36. Anusca, I. et al. Dielectric response: answer to many questions in the methylammonium lead halide solar cell absorbers. Adv. Energy Mater. 7, 1700600 (2017).

    Article  Google Scholar 

  37. Eames, C. et al. Ionic transport in hybrid lead iodide perovskite solar cells. Nat. Commun. 6, 7497 (2015).

    Article  Google Scholar 

  38. Walsh, A. & Stranks, S. D. Taking control of ion transport in halide perovskite solar cells. ACS Energy Lett. 3, 1983–1990 (2018).

    Article  Google Scholar 

  39. Senanayak, S. P. et al. A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Sci. Adv. 6, eaaz4948 (2020).

    Article  Google Scholar 

  40. Yu, W. et al. Single crystal hybrid perovskite field-effect transistors. Nat. Commun. 9, 5354 (2018).

    Article  Google Scholar 

  41. Bruevich, V. et al. The intrinsic (trap-free) transistors based on epitaxial single-crystal perovskites. Adv. Mater. 34, 2205055 (2022).

    Article  Google Scholar 

  42. Poncé, S., Schlipf, M. & Giustino, F. Origin of low carrier mobilities in halide perovskites. ACS Energy Lett. 4, 456–463 (2019).

    Article  Google Scholar 

  43. Xia, C. Q. et al. Limits to electrical mobility in lead-halide perovskite semiconductors. J. Phys. Chem. Lett. 12, 3607–3617 (2021).

    Article  Google Scholar 

  44. Brenner, T. M. et al. Are mobilities in hybrid organic–inorganic halide perovskites actually ‘high’? J. Phys. Chem. Lett. 6, 4754–4757 (2015).

    Article  Google Scholar 

  45. Lin, C.-H. et al. Electrode engineering in halide perovskite electronics: plenty of room at the interfaces. Adv. Mater. 34, 2108616 (2022).

    Article  Google Scholar 

  46. Li, M.-K. et al. Intrinsic carrier transport of phase-pure homologous 2D organolead halide hybrid perovskite single crystals. Small 14, 1803763 (2018).

    Article  Google Scholar 

  47. Borchert, J. W., Weitz, R. T., Ludwigs, S. & Klauk, H. A critical outlook for the pursuit of lower contact resistance in organic transistors. Adv. Mater. 34, 2104075 (2022).

    Article  Google Scholar 

  48. Xu, Y. et al. Essential effects on the mobility extraction reliability for organic transistors. Adv. Funct. Mater. 28, 1803907 (2018).

    Article  Google Scholar 

  49. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Article  Google Scholar 

  50. Kimbrough, R. D. Toxicity and health effects of selected organotin compounds: a review. Environ. Health Perspect. 14, 51–56 (1976).

    Article  Google Scholar 

  51. Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    Article  Google Scholar 

  52. Abate, A. Perovskite solar cells go lead free. Joule 1, 659–664 (2017).

    Article  Google Scholar 

  53. Zhang, K.-C. et al. Effect of quartic anharmonicity on the carrier transport of cubic halide perovskites CsSnI3 and CsPbI3. Phys. Rev. B 106, 235202 (2022).

    Article  Google Scholar 

  54. Chung, I. et al. CsSnI3: semiconductor or metal? High electrical conductivity and strong near-infrared photoluminescence from a single material. High hole mobility and phase-transitions. J. Am. Chem. Soc. 134, 8579–8587 (2012).

    Article  Google Scholar 

  55. Tao, S. et al. Absolute energy level positions in tin- and lead-based halide perovskites. Nat. Commun. 10, 2560 (2019).

    Article  Google Scholar 

  56. Gupta, S., Cahen, D. & Hodes, G. How SnF2 impacts the material properties of lead-free tin perovskites. J. Phys. Chem. C 122, 13926–13936 (2018).

    Article  Google Scholar 

  57. Jiang, X. et al. Tin halide perovskite solar cells: an emerging thin-film photovoltaic technology. Acc. Mater. Res. 2, 210–219 (2021).

    Article  Google Scholar 

  58. Matsushima, T. et al. N-channel field-effect transistors with an organic–inorganic layered perovskite semiconductor. Appl. Phys. Lett. 109, 253301 (2016).

    Article  Google Scholar 

  59. Matsushima, T. et al. Intrinsic carrier transport properties of solution-processed organic–inorganic perovskite films. Appl. Phys. Express 10, 024103 (2017).

    Article  Google Scholar 

  60. Matsushima, T. et al. Large metal halide perovskite crystals for field-effect transistor applications. Appl. Phys. Lett. 115, 120601 (2019).

    Article  Google Scholar 

  61. Pascual, J. et al. Fluoride chemistry in tin halide perovskites. Angew. Chem. Int. Ed. 60, 21583–21591 (2021).

    Article  Google Scholar 

  62. Wang, J. et al. Controlling the crystallization kinetics of lead-free tin halide perovskites for high performance green photovoltaics. Adv. Energy Mater. 11, 2102131 (2021).

    Article  Google Scholar 

  63. Dong, H. et al. Crystallization dynamics of Sn-based perovskite thin films: toward efficient and stable photovoltaic devices. Adv. Energy Mater. 12, 2102213 (2022).

    Article  Google Scholar 

  64. Imran, T. et al. Methylammonium and bromide-free tin-based low bandgap perovskite solar cells. Adv. Energy Mater. 12, 2200305 (2022).

    Article  Google Scholar 

  65. Li, B. et al. Tin-based defects and passivation strategies in tin-related perovskite solar cells. ACS Energy Lett. 5, 3752–3772 (2020).

    Article  Google Scholar 

  66. Goetz, K. P. & Vaynzof, Y. The challenge of making the same device twice in perovskite photovoltaics. ACS Energy Lett. 7, 1750–1757 (2022).

    Article  Google Scholar 

  67. Zhou, Y., Poli, I., Meggiolaro, D., De Angelis, F. & Petrozza, A. Defect activity in metal halide perovskites with wide and narrow bandgap. Nat. Rev. Mater. 6, 986–1002 (2021).

    Article  Google Scholar 

  68. Zhou, S. et al. Confronting the air instability of cesium tin halide perovskites by metal ion incorporation. J. Phys. Chem. Lett. 12, 10996–11004 (2021).

    Article  Google Scholar 

  69. Treglia, A. et al. Effect of electronic doping and traps on carrier dynamics in tin halide perovskites. Mater. Horiz. 9, 1763–1773 (2022).

    Article  Google Scholar 

  70. Zhu, H. et al. High-performance hysteresis-free perovskite transistors through anion engineering. Nat. Commun. 13, 1741 (2022). This paper reported a highly reliable Sn2+ perovskite transistor with insightful discussion on negligible ion migration.

    Article  Google Scholar 

  71. Ning, W. & Gao, F. Structural and functional diversity in lead-free halide perovskite materials. Adv. Mater. 31, 1900326 (2019).

    Article  Google Scholar 

  72. Maughan, A. E., Ganose, A. M., Scanlon, D. O. & Neilson, J. R. Perspectives and design principles of vacancy-ordered double perovskite halide semiconductors. Chem. Mater. 31, 1184–1195 (2019).

    Article  Google Scholar 

  73. Maughan, A. E. et al. Anharmonicity and octahedral tilting in hybrid vacancy-ordered double perovskites. Chem. Mater. 30, 472–483 (2018).

    Article  Google Scholar 

  74. Liu, G. et al. Halide ion migration in lead-free all-inorganic cesium tin perovskites. Appl. Phys. Lett. 119, 031902 (2021).

    Article  Google Scholar 

  75. Maughan, A. E. et al. Defect tolerance to intolerance in the vacancy-ordered double perovskite semiconductors Cs2SnI6 and Cs2TeI6. J. Am. Chem. Soc. 138, 8453–8464 (2016).

    Article  Google Scholar 

  76. Pasha, A., S, A. & Balakrishna, R. G. Reliability of 3D Cs2M+M3+X6 type absorbers for perovskite solar cells: assessing the figures of merit. J. Mater. Chem. A 9, 17701–17719 (2021).

    Article  Google Scholar 

  77. Li, T., Zhao, X., Yang, D., Du, M.-H. & Zhang, L. Intrinsic defect properties in halide double perovskites for optoelectronic applications. Phys. Rev. Appl. 10, 041001 (2018).

    Article  Google Scholar 

  78. Xiao, Z., Meng, W., Wang, J., Mitzi, D. B. & Yan, Y. Searching for promising new perovskite-based photovoltaic absorbers: the importance of electronic dimensionality. Mater. Horiz. 4, 206–216 (2017).

    Article  Google Scholar 

  79. He, Y., Hadar, I. & Kanatzidis, M. G. Detecting ionizing radiation using halide perovskite semiconductors processed through solution and alternative methods. Nat. Photon. 16, 14–26 (2022).

    Article  Google Scholar 

  80. Rudd, P. N. & Huang, J. Metal ions in halide perovskite materials and devices. Trends Chem. 1, 394–409 (2019).

    Article  Google Scholar 

  81. Lehner, A. J. et al. Crystal and electronic structures of complex bismuth iodides A3Bi2I9 (A = K, Rb, Cs) related to perovskite: aiding the rational design of photovoltaics. Chem. Mater. 27, 7137–7148 (2015).

    Article  Google Scholar 

  82. Huang, Y.-T., Kavanagh, S. R., Scanlon, D. O., Walsh, A. & Hoye, R. L. Perovskite-inspired materials for photovoltaics and beyond—from design to devices. Nanotechnology 32, 132004 (2021). This paper discussed the defect tolerance character of halide perovskites.

    Article  Google Scholar 

  83. Park, Y., Kim, S. H., Lee, D. & Lee, J.-S. Designing zero-dimensional dimer-type all-inorganic perovskites for ultra-fast switching memory. Nat. Commun. 12, 3527 (2021).

    Article  Google Scholar 

  84. Xie, F. X. et al. Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. ACS Nano 9, 639–646 (2015).

    Article  Google Scholar 

  85. Xiao, Z. et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26, 6503–6509 (2014).

    Article  Google Scholar 

  86. Li, N. et al. Liquid medium annealing for fabricating durable perovskite solar cells with improved reproducibility. Science 373, 561–567 (2021).

    Article  Google Scholar 

  87. Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    Article  Google Scholar 

  88. Cui, L. Pseudohalide anion engineering for highly efficient and stable perovskite solar cells. Matter 4, 1762–1764 (2021).

    Article  Google Scholar 

  89. Liu, A. et al. Antimony fluoride (SbF3): a potent hole suppressor for tin(II)-halide perovskite devices. InfoMat 5, e12386 (2023).

    Article  Google Scholar 

  90. Luo, D., Su, R., Zhang, W., Gong, Q. & Zhu, R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat. Rev. Mater. 5, 44–60 (2020).

    Article  Google Scholar 

  91. Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021).

    Article  Google Scholar 

  92. Amerling, E. et al. A multi-dimensional perspective on electronic doping in metal halide perovskites. ACS Energy Lett. 6, 1104–1123 (2021).

    Article  Google Scholar 

  93. Lu, D. et al. Pursuing high-performance organic field-effect transistors through organic salt doping. Adv. Funct. Mater. 32, 2111285 (2022).

    Article  Google Scholar 

  94. Reo, Y., Zhu, H., Liu, A. & Noh, Y.-Y. Molecular doping enabling mobility boosting of 2D Sn2+-based perovskites. Adv. Funct. Mater. 32, 2204870 (2022).

    Article  Google Scholar 

  95. Shiah, Y.-S. et al. Mobility–stability trade-off in oxide thin-film transistors. Nat. Electron. 4, 800–807 (2021).

    Article  Google Scholar 

  96. Lin, Y.-H. et al. Hybrid organic–metal oxide multilayer channel transistors with high operational stability. Nat. Electron. 2, 587–595 (2019).

    Article  Google Scholar 

  97. Nikolka, M. et al. High operational and environmental stability of high-mobility conjugated polymer field-effect transistors through the use of molecular additives. Nat. Mater. 16, 356–362 (2017).

    Article  Google Scholar 

  98. Wang, T. & Yan, F. Reducing agents for improving the stability of Sn-based perovskite solar cells. Chem. Asian J. 15, 1524–1535 (2020).

    Article  Google Scholar 

  99. Grancini, G. et al. One-year stable perovskite solar cells by 2D/3D interface engineering. Nat. Commun. 8, 15684 (2017).

    Article  Google Scholar 

  100. Jia, X., Fuentes-Hernandez, C., Wang, C.-Y., Park, Y. & Kippelen, B. Stable organic thin-film transistors. Sci. Adv. 4, eaao1705 (2018).

    Article  Google Scholar 

  101. Vacca, P. in Organic Flexible Electronics (eds Cosseddu, P. & Caironi, M.) 225–248 (Woodhead, 2021).

  102. Steinmann, V. & Moro, L. Encapsulation requirements to enable stable organic ultrathin and stretchable devices. J. Mater. Res. 33, 1925–1936 (2018).

    Article  Google Scholar 

  103. Ma, S. et al. Development of encapsulation strategies towards the commercialization of perovskite solar cells. Energy Environ. Sci. 15, 13–55 (2022).

    Article  Google Scholar 

  104. Jeong, B., Han, H. & Park, C. Micro- and nanopatterning of halide perovskites where crystal engineering for emerging photoelectronics meets integrated device array technology. Adv. Mater. 32, 2000597 (2020).

    Article  Google Scholar 

  105. Zhu, H. et al. Printable semiconductors for backplane TFTs of flexible OLED displays. Adv. Funct. Mater. 30, 1904588 (2020).

    Article  Google Scholar 

  106. Vaynzof, Y. The future of perovskite photovoltaics—thermal evaporation or solution processing? Adv. Energy Mater. 10, 2003073 (2020).

    Article  Google Scholar 

  107. Lin, D., Zhan, Z., Huang, X., Liu, P. & Xie, W. Advances in components engineering in vapor deposited perovskite thin film for photovoltaic application. Mater. Today Adv. 16, 100277 (2022).

    Article  Google Scholar 

  108. Li, H. et al. Sequential vacuum-evaporated perovskite solar cells with more than 24% efficiency. Sci. Adv. 8, eabo7422 (2022).

    Article  Google Scholar 

  109. Jiang, Y., He, S., Qiu, L., Zhao, Y. & Qi, Y. Perovskite solar cells by vapor deposition based and assisted methods. Appl. Phys. Rev. 9, 021305 (2022).

    Article  Google Scholar 

  110. Du, P. et al. Thermal evaporation for halide perovskite optoelectronics: fundamentals, progress, and outlook. Adv. Opt. Mater. 10, 2101770 (2022).

    Article  Google Scholar 

  111. Matsushima, T., Yasuda, T., Fujita, K. & Adachi, C. Field-effect transistors with vacuum-deposited organic–inorganic perovskite films as semiconductor channels. J. Appl. Phys. 120, 233301 (2016).

    Article  Google Scholar 

  112. Klein, M., Li, J., Bruno, A. & Soci, C. Co-evaporated perovskite light-emitting transistor operating at room temperature. Adv. Electron. Mater. 7, 2100403 (2021).

    Article  Google Scholar 

  113. Matsushima, T., Fujita, K. & Tsutsui, T. High field-effect hole mobility in organic-inorganic hybrid thin films prepared by vacuum vapor deposition technique. Jpn J. Appl. Phys. 43, L1199 (2004).

    Article  Google Scholar 

  114. Cai, Y. et al. 2D-layered manganese perovskite with high mobility. Adv. Funct. Mater. 33, 2211191 (2023).

    Article  Google Scholar 

  115. Perinot, A., Passarella, B., Giorgio, M. & Caironi, M. Walking the route to GHz solution-processed organic electronics: a heroic exploration. Adv. Funct. Mater. 30, 1907641 (2020).

    Article  Google Scholar 

  116. Perinot, A., Giorgio, M. & Caironi, M. in Flexible Carbon-Based Electronics (eds Samorì, P. & Palermo, V.) 71–94 (Wiley, 2018).

  117. Dou, L. et al. Atomically thin two-dimensional organic–inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    Article  Google Scholar 

  118. Ricciardulli, A. G., Yang, S., Smet, J. H. & Saliba, M. Emerging perovskite monolayers. Nat. Mater. 20, 1325–1336 (2021).

    Article  Google Scholar 

  119. Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    Article  Google Scholar 

  120. Pan, D. et al. Deterministic fabrication of arbitrary vertical heterostructures of two-dimensional Ruddlesden–Popper halide perovskites. Nat. Nanotechnol. 16, 159–165 (2021).

    Article  Google Scholar 

  121. Klauk, H. Will we see gigahertz organic transistors? Adv. Electron. Mater. 4, 1700474 (2018).

    Article  Google Scholar 

  122. Son, Y., Frost, B., Zhao, Y. & Peterson, R. L. Monolithic integration of high-voltage thin-film electronics on low-voltage integrated circuits using a solution process. Nat. Electron. 2, 540–548 (2019).

    Article  Google Scholar 

  123. Zhu, H. et al. Perovskite and conjugated polymer wrapped semiconducting carbon nanotube hybrid films for high-performance transistors and phototransistors. ACS Nano 13, 3971–3981 (2019).

    Article  Google Scholar 

  124. Xie, C., Liu, C.-K., Loi, H.-L. & Yan, F. Perovskite-based phototransistors and hybrid photodetectors. Adv. Funct. Mater. 30, 1903907 (2020).

    Article  Google Scholar 

  125. Lu, H., Vardeny, Z. V. & Beard, M. C. Control of light, spin and charge with chiral metal halide semiconductors. Nat. Rev. Chem. 6, 470–485 (2022).

    Article  Google Scholar 

  126. Zaumseil, J. Recent developments and novel applications of thin film, light-emitting transistors. Adv. Funct. Mater. 30, 1905269 (2020).

    Article  Google Scholar 

  127. Tian, J. et al. Phase-change perovskite metasurfaces for dynamic color tuning. Nanophotonics 11, 3964–3968 (2022).

    Article  Google Scholar 

  128. Beom, K., Fan, Z., Li, D. & Newman, N. Halide perovskite based synaptic devices for neuromorphic systems. Mater. Today Phys. 24, 100667 (2022).

    Article  Google Scholar 

  129. Chen, J.-Y., Chiu, Y.-C., Li, Y.-T., Chueh, C.-C. & Chen, W.-C. Nonvolatile perovskite-based photomemory with a multilevel memory behavior. Adv. Mater. 29, 1702217 (2017).

    Article  Google Scholar 

  130. Daus, A. et al. Metal-halide perovskites for gate dielectrics in field-effect transistors and photodetectors enabled by PMMA lift-off process. Adv. Mater. 30, 1707412 (2018).

    Article  Google Scholar 

  131. Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).

    Article  Google Scholar 

  132. Tang, G., Ghosez, P. & Hong, J. Band-edge orbital engineering of perovskite semiconductors for optoelectronic applications. J. Phys. Chem. Lett. 12, 4227–4239 (2021).

    Article  Google Scholar 

  133. Goyal, A. et al. Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem. Mater. 30, 3920–3928 (2018).

    Article  Google Scholar 

  134. Jin, H. et al. It’s a trap! On the nature of localised states and charge trapping in lead halide perovskites. Mater. Horiz. 7, 397–410 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Ministry of Science and ICT through the National Research Foundation, funded by the Korean government (2021R1A2C3005401 and RS-2023-00260608), the BK21 FOUR Program for Education Program for Innovative Chemical Engineering Leaders of the NRF grant funded by the MIST of the Korean government, and Samsung Display Corporation. L.D. acknowledges support from the US Department of Energy, Office of Basic Energy Sciences, under award number DE-SC0022082. A.P. has received funding from the ERC project SOPHY under grant agreement number 771528 and has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement number 956270

Author information

Authors and Affiliations

Authors

Contributions

A.L., H.Z. and Y.-Y.N. conceived the project and all authors contributed to manuscript writing.

Corresponding authors

Correspondence to Huihui Zhu or Yong-Young Noh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, A., Zhu, H., Bai, S. et al. High-performance metal halide perovskite transistors. Nat Electron 6, 559–571 (2023). https://doi.org/10.1038/s41928-023-01001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-01001-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing