Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide

Abstract

Moiré superlattices in van der Waals structures can be used to control the electronic properties of the material and can lead to emergent correlated and topological phenomena. Non-collinear states and domain structures have previously been observed in twisted van der Waals magnets, but the effective manipulation of the magnetic behaviour remains challenging. Here we report electrically tunable moiré magnetism in twisted double bilayers—that is, a bilayer plus a bilayer with a twist angle between them—of layered antiferromagnet chromium triiodide. Using magneto-optical Kerr effect microscopy, we observe the coexistence of antiferromagnetic and ferromagnetic order with non-zero net magnetization—a hallmark of moiré magnetism. Such a magnetic state extends over a wide range of twist angles (with transitions at around 0° and above 20°) and exhibits a non-monotonic temperature dependence. We also demonstrate voltage-assisted magnetic switching. The observed non-trivial magnetic states, as well as control via twist angle, temperature and electrical gating, are supported by a simulated phase diagram of moiré magnetism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Moiré superlattice and STEM characterizations of tDB CrI3.
Fig. 2: Twist angle dependence of the magnetism in tDB CrI3.
Fig. 3: Temperature dependence of the magnetism in tDB CrI3.
Fig. 4: Electrical control of magnetism in tDB CrI3.
Fig. 5: Theoretical analysis of the moiré magnetism in tDB CrI3.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The computer code used in this study is available from the corresponding authors upon reasonable request.

References

  1. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    Article  Google Scholar 

  2. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    Article  Google Scholar 

  3. Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    Article  Google Scholar 

  4. Chen, G. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 15, 237–241 (2019).

    Article  Google Scholar 

  5. Hunt, B. et al. Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure. Science 340, 1427–1430 (2013).

    Article  Google Scholar 

  6. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    Article  Google Scholar 

  7. Sunku, S. S. et al. Photonic crystals for nano-light in moiré graphene superlattices. Science 362, 1153–1156 (2018).

    Article  MathSciNet  Google Scholar 

  8. Chen, X. et al. Moiré engineering of electronic phenomena in correlated oxides. Nat. Phys. 16, 631–635 (2020).

    Article  Google Scholar 

  9. Hu, G. et al. Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature 582, 209–213 (2020).

    Article  Google Scholar 

  10. Song, T. et al. Direct visualization of magnetic domains and moiré magnetism in twisted 2D magnets. Science 374, 1140–1144 (2021).

    Article  Google Scholar 

  11. Xu, Y. et al. Coexisting ferromagnetic–antiferromagnetic state in twisted bilayer CrI3. Nat. Nanotechnol. 17, 143–147 (2021).

    Article  Google Scholar 

  12. Xie, H. et al. Twist engineering of the two-dimensional magnetism in double bilayer chromium triiodide homostructures. Nat. Phys. 18, 30–36 (2021).

    Article  Google Scholar 

  13. Cao, Y. et al. Superlattice-induced insulating states and valley-protected orbits in twisted bilayer graphene. Phys. Rev. Lett. 117, 116804 (2016).

    Article  Google Scholar 

  14. Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  Google Scholar 

  15. Banerjee, A. et al. Neutron scattering in the proximate quantum spin liquid α-RuCl3. Science 356, 1055–1058 (2017).

    Article  Google Scholar 

  16. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  Google Scholar 

  17. Jiang, S. W., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  Google Scholar 

  18. Li, T. X. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    Article  Google Scholar 

  19. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  Google Scholar 

  20. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  21. Hejazi, K., Luo, Z. X. & Balents, L. Noncollinear phases in moiré magnets. Proc. Natl Acad. Sci. USA 117, 10721–10726 (2020).

    Article  MATH  MathSciNet  Google Scholar 

  22. Tong, Q. J., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    Article  Google Scholar 

  23. Wang, C., Gao, Y., Lv, H. Y., Xu, X. D. & Xiao, D. Stacking domain wall magnons in twisted van der Waals magnets. Phys. Rev. Lett. 125, 247201 (2020).

    Article  Google Scholar 

  24. Akram, M. et al. Moiré skyrmions and chiral magnetic phases in twisted CrX3 (X = I, Br, and Cl) bilayers. Nano Lett. 21, 6633–6639 (2021).

    Article  Google Scholar 

  25. Sivadas, N., Okamoto, S., Xu, X. D., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    Article  Google Scholar 

  26. Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    Article  Google Scholar 

  27. Jiang, S. W., Li, L. Z., Wang, Z. F., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  Google Scholar 

  28. Kim, K. et al. Van der Waals heterostructures with high accuracy rotational alignment. Nano Lett. 16, 1989–1995 (2016).

    Article  Google Scholar 

  29. Wu, M., Li, Z. L., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019).

    Article  Google Scholar 

  30. Andrei, E. Y. & MacDonald, A. H. Graphene bilayers with a twist. Nat. Mater. 19, 1265–1275 (2020).

    Article  Google Scholar 

  31. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  32. Song, T. C. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    Article  Google Scholar 

  33. Xie, H. et al. Evidence of non-collinear spin texture in magnetic moiré superlattices. Nat. Phys. https://doi.org/10.1038/s41567-023-02061-z (2023).

  34. Sun, Q. C. et al. Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging. Nat. Commun. 12, 1989 (2021).

    Article  Google Scholar 

  35. Kohlhepp, J., Elmers, H. J., Cordes, S. & Gradmann, U. Power laws of magnetization in ferromagnetic monolayers and the two-dimensional Ising model. Phys. Rev. B 45, 12287–12291 (1992).

    Article  Google Scholar 

  36. Kim, M. et al. Micromagnetometry of two-dimensional ferromagnets. Nat. Electron. 2, 457–463 (2019).

    Article  Google Scholar 

  37. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  Google Scholar 

  38. Chiba, D., Yamanouchi, M., Matsukura, F. & Ohno, H. Electrical manipulation of magnetization reversal in a ferromagnetic semiconductor. Science 301, 943–945 (2003).

    Article  Google Scholar 

  39. Sivadas, N., Okamoto, S. & Xiao, D. Gate-controllable magneto-optic Kerr effect in layered collinear antiferromagnets. Phys. Rev. Lett. 117, 267203 (2016).

    Article  Google Scholar 

  40. Lei, C. et al. Magnetoelectric response of antiferromagnetic CrI3 bilayers. Nano Lett. 21, 1948–1954 (2021).

    Article  Google Scholar 

  41. Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Article  Google Scholar 

  42. Rustagi, A., Solanki, A. B., Tserkovnyak, Y. & Upadhyaya, P. Coupled spin-charge dynamics in magnetic van der Waals heterostructures. Phys. Rev. B 102, 094421 (2020).

    Article  Google Scholar 

  43. Du, C. et al. Control and local measurement of the spin chemical potential in a magnetic insulator. Science 357, 195–198 (2017).

    Article  Google Scholar 

  44. Yoo, H. et al. Atomic and electronic reconstruction at the van der Waals interface in twisted bilayer graphene. Nat. Mater. 18, 448–453 (2019).

    Article  Google Scholar 

  45. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  Google Scholar 

  46. Liu, Y. & Petrovic, C. Three-dimensional magnetic critical behavior in CrI3. Phys. Rev. B 97, 014420 (2018).

    Article  Google Scholar 

  47. Idzuchi, H. L., Allcca, A. E., Pan, X. C., Tanigaki, K. & Chen, Y. P. Increased Curie temperature and enhanced perpendicular magneto anisotropy of Cr2Ge2Te6/NiO heterostructures. Appl. Phys. Lett. 115, 232403 (2019).

    Article  Google Scholar 

  48. Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge partial support of the work from the US Department of Energy (DOE), Office of Science, through the Quantum Science Center (QSC, a National Quantum Information Science Research Center) and Department of Defense (DOD) Multidisciplinary University Research Initiatives (MURI) program (FA9550-20-1-0322) for materials and device fabrication and the MOKE and TEM measurements. G.C. and Y.P.C. also acknowledge partial support from WPI-AIMR, JSPS KAKENHI Basic Science A (18H03858), New Science (18H04473 and 20H04623) and Tohoku University FRiDUO program in early stages of the research. M.M.R., A.R. and P.U. also acknowledge support from the National Science Foundation (NSF) (ECCS-1810494). Z.M. acknowledges support from the US DOE under grant DE-SC0019068 for sample synthesis. K.W. and T.T. acknowledge support from the JSPS KAKENHI (grant numbers 20H00354, 21H05233 and 23H02052) and World Premier International Research Center Initiative (WPI), MEXT, Japan.

Author information

Authors and Affiliations

Authors

Contributions

G.C. and Y.P.C. conceived the project. G.C. fabricated the devices and performed the experiments, assisted by A.L.A. M.M.R., A.R. and P.U. performed the supporting theoretical analysis. X.L., G.C., L.L. and L.F. performed the TEM measurements. Y.Z. and Z.M. provided the bulk CrI3 crystals. K.W. and T.T. provided the bulk hBN crystals. Y.P.C. and P.U. supervised the project. G.C., M.M.R., P.U. and Y.P.C. wrote the manuscript with input from all co-authors.

Corresponding authors

Correspondence to Pramey Upadhyaya or Yong P. Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13 and Figs. 1–17.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, G., Rahman, M.M., Allcca, A.L. et al. Electrically tunable moiré magnetism in twisted double bilayers of chromium triiodide. Nat Electron 6, 434–442 (2023). https://doi.org/10.1038/s41928-023-00978-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00978-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing