Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Small-voltage multiferroic control of two-dimensional magnetic insulators

Abstract

Magnetic insulators, which have long-range magnetic order and are electrically insulating, allow spin propagation without electron motion and could be used to create dissipationless magnetoelectric and magneto-optical devices. Atomically thin two-dimensional (2D) magnetic insulators could, in particular, be used to fabricate compact devices. However, the efficient electrical control of 2D magnetic insulators remains a challenge due to difficulties in electrostatically doping such insulators and the inability of external electric fields to modify their crystal fields. Here we report the electrical control of the 2D magnetic insulator chromium germanium telluride (Cr2Ge2Te6) using a thin ferroelectric polymer. We show that ±5 V across the Cr2Ge2Te6/polymer heterostructures can open and close the magnetic hysteresis loop. The magnetic modulation is non-volatile, and is observed in bilayer, trilayer and four-layer Cr2Ge2Te6, but not in thicker eight-layer Cr2Ge2Te6, which indicates the importance of the interfacial multiferroic effect. The heterostructure multiferroics also enable direct electrical toggling between two magnetization states.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Multiferroic heterostructure device.
Fig. 2: Voltage control of magnetism in Cr2Ge2Te6/P(VDF-TrFE).
Fig. 3: Voltage dependence of magnetic coercivity and percentile remanent magnetization in 2L-Cr2Ge2Te6/P(VDF-TrFE) at 4 K.
Fig. 4: Direct voltage switching of magnetization in 2L-Cr2Ge2Te6/P(VDF-TrFE).

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes used for plotting the data are available from the corresponding author upon reasonable request.

References

  1. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    Article  Google Scholar 

  2. Neusser, S. & Grundler, D. Magnonics: spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).

    Article  Google Scholar 

  3. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  Google Scholar 

  4. Cornelissen, L. J., Liu, J., Duine, R. A., Youssef, J. B. & van Wees, B. J. Long-distance transport of magnon spin information in a magnetic insulator at room temperature. Nat. Phys. 11, 1022–1026 (2015).

    Article  Google Scholar 

  5. Subkhangulov, R. R. et al. Terahertz modulation of the Faraday rotation by laser pulses via the optical Kerr effect. Nat. Photon. 10, 111–114 (2016).

    Article  Google Scholar 

  6. Khazanov, E. et al. Effect of terbium gallium garnet crystal orientation on the isolation ratio of a Faraday isolator at high average power. Appl. Opt. 41, 483–492 (2002).

    Article  Google Scholar 

  7. Yoshida, H. et al. Optical properties and Faraday effect of ceramic terbium gallium garnet for a room temperature Faraday rotator. Opt. Express 19, 15181–15187 (2011).

    Article  Google Scholar 

  8. Chu, Y.-H. et al. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7, 478–482 (2008).

    Article  Google Scholar 

  9. Spaldin, N. A. & Ramesh, R. Advances in magnetoelectric multiferroics. Nat. Mater. 18, 203–212 (2019).

    Article  Google Scholar 

  10. Baek, S. H. et al. Ferroelastic switching for nanoscale non-volatile magnetoelectric devices. Nat. Mater. 9, 309–314 (2010).

    Article  Google Scholar 

  11. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    Article  Google Scholar 

  12. Mankalale, M. G. et al. CoMET: composite-input magnetoelectric-based logic technology. IEEE J. Explor. Solid-State Computat. 3, 27–36 (2017).

    Google Scholar 

  13. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  14. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  15. Heron, J. T. et al. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107, 217202 (2011).

    Article  Google Scholar 

  16. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  Google Scholar 

  17. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  Google Scholar 

  18. Si, M., Liao, P.-Y., Qiu, G., Duan, Y. & Ye, P. D. Ferroelectric field-effect transistors based on MoS2 and CuInP2S6 two-dimensional van der Waals heterostructure. ACS Nano 12, 6700–6705 (2018).

    Article  Google Scholar 

  19. Ohno, H. et al. Electric-field control of ferromagnetism. Nature 408, 944–947 (2000).

    Article  Google Scholar 

  20. Dobrowolska, M. et al. Controlling the Curie temperature in (Ga,Mn)As through location of the Fermi level within the impurity band. Nat. Mater. 11, 444–449 (2012).

    Article  Google Scholar 

  21. Weisheit, M. et al. Electric field-induced modification of magnetism in thin-film ferromagnets. Science 315, 349–351 (2007).

    Article  Google Scholar 

  22. Duan, C. G. et al. Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008).

    Article  Google Scholar 

  23. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  Google Scholar 

  24. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  Google Scholar 

  25. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  Google Scholar 

  26. Gong, C., Kim, E. M., Wang, Y., Lee, G. & Zhang, X. Multiferroicity in atomic van der Waals heterostructures. Nat. Commun. 10, 2657 (2019).

    Article  Google Scholar 

  27. Qi, J., Wang, H., Chen, X. & Qian, X. Two-dimensional multiferroic semiconductors with coexisting ferroelectricity and ferromagnetism. Appl. Phys. Lett. 113, 043102 (2018).

    Article  Google Scholar 

  28. Nakhmanson, S. M., Rabe, K. M. & Vanderbilt, D. Polarization enhancement in two- and three-component ferroelectric superlattices. Appl. Phys. Lett. 87, 102906 (2005).

    Article  Google Scholar 

  29. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  Google Scholar 

  30. Wu, D. et al. Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes. Nano Lett. 15, 8136–8140 (2015).

    Article  Google Scholar 

  31. Chen, X., Han, X. & Shen, Q.-D. PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 3, 1600460 (2017).

    Article  Google Scholar 

  32. Neese, B. et al. Large electrocaloric effect in ferroelectric polymers near room temperature. Science 321, 821–823 (2008).

    Article  Google Scholar 

  33. Nemes-Incze, P., Osváth, Z., Kamarás, K. & Biró, L. P. Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46, 1435–1442 (2008).

    Article  Google Scholar 

  34. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    Article  Google Scholar 

  35. Rajapitamahuni, A., Hoffman, J., Ahn, C. H. & Hong, X. Examining graphene field effect sensors for ferroelectric thin film studies. Nano Lett. 13, 4374–4379 (2013).

    Article  Google Scholar 

  36. Hu, J.-M., Chen, L.-Q. & Nan, C.-W. Multiferroic heterostructures integrating ferroelectric and magnetic materials. Adv. Mater. 28, 15–39 (2016).

    Article  Google Scholar 

  37. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotechnol. 10, 209–220 (2015).

    Article  Google Scholar 

  38. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

C.G. acknowledges support from the Air Force Office of Scientific Research under award no. FA9550-22-1-0349, Naval Air Warfare Center Aircraft Division under award no. N00421-22-1-0001, Army Research Laboratory under cooperative agreement no. W911NF-19-2-0181, National Science Foundation under award nos. CMMI-2233592 and 49100423C0011, and Northrop Grumman Mission Systems’ University Research Program. I.Ž. acknowledges support from the Air Force Office of Scientific Research under award no. FA9550-22-1-0349 and National Science Foundation under award nos. CMMI-2233375 and ECCS-2130845. S.-J.G. acknowledges support from the National Natural Science Foundation of China under award no. 62274066. J.-P.W. acknowledges support from the Robert F. Hartmann Endowed Chair Professorship. M.A.S. and B.S.C. acknowledge support from the United States Air Force Office of Scientific Research LRIR 18RQCOR100 and AOARD-MOST grant no. F4GGA21207H002. B.S.C. further acknowledges the National Research Council Senior Fellowship award. C.G. is grateful for the fruitful discussions with J. Chang, R. Howell and Q. Zhang.

Author information

Authors and Affiliations

Authors

Contributions

C.G. conceived and supervised the project. S.L. conducted the exfoliation of 2D samples and device fabrication with the assistance of T.X. S.L. and T.X. performed the RMCD measurements under the supervision of C.G., with the assistance of Z.S. for the Raman spectroscopic measurements. N.A.B. conducted the capacitance measurements under the supervision of A.L.F. T.E. carried out the AFM measurements under the supervision of M.O. T.Z. conducted the DFT calculations under the supervision of I.Ž. M.A.S. and B.S.C. synthesized the bulk single crystals of Cr2Ge2Te6. S.-J.G. partially provided the understanding of the DFT method. J.-P.W. contributed to the potential spintronic-devices-related discussion. S.L. and C.G. analysed the data. S.L., J.L., X.Z. and C.G. wrote the paper. All the authors commented on the paper.

Corresponding author

Correspondence to Cheng Gong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Manfred Fiebig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9, figure notes and Note 1.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Xie, T., Blumenschein, N.A. et al. Small-voltage multiferroic control of two-dimensional magnetic insulators. Nat Electron 6, 199–205 (2023). https://doi.org/10.1038/s41928-023-00931-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00931-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing