Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Cryogenic memory technologies

Abstract

Cryogenic data storage technology is of use in superconducting single-flux quantum electronics and quantum computing. However, the lack of compatible cryogenic memory technology, which can operate at temperatures of 4 K (or lower), hinders the development of practical and scalable systems. Here we examine the development of cryogenic memory technologies. We explore three areas of memory technology: cryogenic non-superconducting memories (including those based on charge and resistance), superconducting memories (including those based on Josephson junctions, superconducting quantum interference devices and superconducting memristors) and hybrid memories (which use both superconducting and non-superconducting technologies). We consider the key challenges involved in the integration of such memories with single-flux quantum circuits and quantum computers. We also provide a comparison of the capabilities of the different technologies in the context of the requirements of superconducting electronics and quantum computing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Advantages and taxonomy of cryogenic memory technologies.
Fig. 2: Cryogenic characterization of non-superconducting charge-based memories.
Fig. 3: Non-superconducting resistance-based memories.
Fig. 4: JJ-based superconducting memories.
Fig. 5: MJJ, superconducting memristor (ScM), and ferroelectric SQUID-based superconducting memories.
Fig. 6: Hybrid semiconductor–superconductor memories.

Similar content being viewed by others

Data availability

The data that support the plots within this paper are available from the corresponding author on reasonable request.

References

  1. Mujtaba, H. Cerebras wafer scale engine is a massive AI chip featuring 2.6 trillion transistors & nearly 1 million cores. wccftech https://wccftech.com/cerebras-unveils-7nm-wafe-scale-engine-2-largest-ai-chip-ever-built/ (2021).

  2. Masanet, E., Shehabi, A., Lei, N., Smith, S. & Koomey, J. Recalibrating global data center energy-use estimates. Science 367, 984–986 (2020).

    Article  Google Scholar 

  3. Likharev, K. K. & Lukens, J. Dynamics of Josephson junctions and circuits. Phys. Today 41, 122 (1988).

    Article  Google Scholar 

  4. Mukhanov, O. A. et al. Superconductor digital-RF receiver systems. IEICE Trans. Electron. 91, 306–317 (2008).

    Article  Google Scholar 

  5. Vernik, I. V. et al. Cryocooled wideband digital channelizing radio-frequency receiver based on low-pass ADC. Supercond. Sci. Technol. 20, S323 (2007).

    Article  Google Scholar 

  6. Superconducting Technology Assessment (National Security Agency Office of Corporate Assessments, 2005).

  7. Hastings, M. B., Wecker, D., Bauer, B. & Troyer, M. Improving quantum algorithms for quantum chemistry. Quantum Inf. Comput. 15, 1–21 (2015).

    MathSciNet  Google Scholar 

  8. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26, 1484–1509 (1997).

    Article  MathSciNet  MATH  Google Scholar 

  9. Feynman, R. P. Quantum mechanical computers. Found. Phys. 16, 507–531 (1986).

    Article  MathSciNet  Google Scholar 

  10. Tannu, S. S., Carmean, D. M. & Qureshi, M. K. Cryogenic-DRAM based memory system for scalable quantum computers: a feasibility study. ACM Int. Conf. Proc. Ser. Oct. 2017, 189–195 (2017). This paper discusses the importance of cryogenic memory for scalable quantum computers and studies the feasibility of using DRAMs as a cryogenic memory candidate.

    Google Scholar 

  11. Filippov, T. V. et al. 20 GHz operation of an asynchronous wave-pipelined RSFQ arithmetic-logic unit. Phys. Proc. 36, 59–65 (2012).

    Article  Google Scholar 

  12. Ware, F. et al. Do superconducting processors really need cryogenic memories? The case for cold DRAM. ACM Int. Conf. Proc. Ser. Oct. 2017, 183–188 (2017).

    Google Scholar 

  13. Patra, B. et al. Cryo-CMOS circuits and systems for quantum computing applications. IEEE J. Solid -State Circuits 53, 309–321 (2018).

    Article  Google Scholar 

  14. Veldhorst, M. et al. An addressable quantum dot qubit with fault-tolerant control-fidelity. Nat. Nanotechnol. 9, 981–985 (2014).

    Article  Google Scholar 

  15. Veldhorst, M. et al. A two-qubit logic gate in silicon. Nature 526, 410–414 (2015).

    Article  Google Scholar 

  16. Chow, J. M. et al. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nat. Commun. 5, 4015 (2014).

    Article  Google Scholar 

  17. Dicarlo, L. et al. Demonstration of two-qubit algorithms with a superconducting quantum processor. Nature 460, 240–244 (2009).

    Article  Google Scholar 

  18. Kawakami, E. et al. Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666–670 (2014).

    Article  Google Scholar 

  19. Likharev, K. K. Superconductor digital electronics. Physica C 482, 6–18 (2012).

    Article  Google Scholar 

  20. Hornibrook, J. M. et al. Cryogenic control architecture for large-scale quantum computing. Phys. Rev. Appl. 3, 024010 (2015).

    Article  Google Scholar 

  21. Tannu, S. S., Myers, Z. A., Nair, P. J., Carmean, D. M. & Qureshi, M. K. Taming the instruction bandwidth of quantum computers via hardware-managed error correction. In Proc. 50th Annual IEEE/ACM International Symposium on Microarchitecture 679–691 (ACM, 2017); https://doi.org/10.1145/3123939

  22. Tuckerman, D. B. et al. Flexible superconducting Nb transmission lines on thin film polyimide for quantum computing applications. Supercond. Sci. Technol. 29, 084007 (2016).

    Article  Google Scholar 

  23. Yoshikawa, N. et al. Characterization of 4 K CMOS devices and circuits for hybrid Josephson-CMOS systems. IEEE Trans. Appl. Supercond. 15, 267–271 (2005).

    Article  Google Scholar 

  24. Henkels, W. H. et al. A low temperature 12 ns DRAM. In International Symposium on VLSI Technology, Systems and Applications 32–35 (IEEE, 1989); https://doi.org/10.1109/VTSA.1989.68576. This paper characterized room-temperature CMOS memory at cryogenic temperatures.

  25. Henkels, W. H. et al. Low temperature SER and noise in a high speed DRAM. In Proc. Workshop on Low Temperature Semiconductor Electronics 5–9 (IEEE, 1989); https://doi.org/10.1109/ltse.1989.50171

  26. Mohler, R. L. et al. A 4-Mb low-temperature DRAM. IEEE J. Solid State Circuits 26, 1519–1529 (1991).

    Article  Google Scholar 

  27. Vogelsang, T. Understanding the energy consumption of dynamic random access memories. In Proc. 43rd Annual IEEE/ACM International Symposium on Microarchitecture 363–374 (IEEE, 2010); https://doi.org/10.1109/MICRO.2010.42

  28. Mitchell, C., McCartney, C. L., Hunt, M. & Ho, F. D. Characteristics of a three-transistor DRAM circuit utilizing a ferroelectric transistor. Integr. Ferroelectr. 157, 31–38 (2014).

    Article  Google Scholar 

  29. Tack, M. R., Gao, M., Claeys, C. L. & Declerck, G. J. The multistable charge-controlled memory effect in SOI MOS transistors at low temperatures. IEEE Trans. Electron Devices 37, 1373–1382 (1990).

    Article  Google Scholar 

  30. Morishita, F. et al. Leakage mechanism due to floating body and countermeasure on dynamic retention mode of SOI-DRAM. Symposium on VLSI Technology, Digest of Technical Papers 141–142 (IEEE, 1995); https://doi.org/10.1109/vlsit.1995.520897

  31. Ohsawa, T. et al. A memory using one-transistor gain cell on SOI(FBC) with performance suitable for embedded DRAM’s. In Symposium on VLSI Circuits, Digest of Technical Papers 93–96 (IEEE, 2003); https://doi.org/10.1109/vlsic.2003.1221171

  32. Collaert, N. et al. A low-voltage biasing scheme for aggressively scaled bulk FinFET 1T-DRAM featuring 10s retention at 85 °C. In Symposium on VLSI Technology, Digest of Technical Papers 161–162 (IEEE, 2010); https://doi.org/10.1109/VLSIT.2010.5556211

  33. Park, K. H., Park, C. M., Kong, S. H. & Lee, J. H. Novel double-gate 1T-DRAM cell using nonvolatile memory functionality for high-performance and highly scalable embedded DRAMs. IEEE Trans. Electron Devices 57, 614–619 (2010).

    Article  Google Scholar 

  34. Bae, J. H. et al. Characterization of a capacitorless DRAM cell for cryogenic memory applications. IEEE Electron Device Lett. 40, 1614–1617 (2019).

    Article  Google Scholar 

  35. Song, Y. J., Jeong, G., Baek, I. G. & Choi, J. What lies ahead for resistance-based memory technologies? Computer 46, 30–36 (2013).

    Article  Google Scholar 

  36. Lee, H. Y. et al. Evidence and solution of over-RESET problem for HfOx based resistive memory with sub-ns switching speed and high endurance. In International Electron Devices Meeting 19.7.1–19.7.4 (IEEE, 2010); https://doi.org/10.1109/IEDM.2010.5703395

  37. Govoreanu, B. et al. 10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation. In International Electron Devices Meeting 31.6.1–31.6.4 (IEEE, 2011); https://doi.org/10.1109/IEDM.2011.6131652

  38. Ielmini, D. et al. Scaling analysis of submicrometer nickel-oxide-based resistive switching memory devices. J. Appl. Phys. 109, 034506 (2011).

    Article  Google Scholar 

  39. Kügeler, C., Zhang, J., Hoffmann-Eifert, S., Kim, S. K. & Waser, R. Nanostructured resistive memory cells based on 8-nm-thin TiO2 films deposited by atomic layer deposition. J. Vac. Sci. Technol. B 29, 01AD01 (2011).

    Article  Google Scholar 

  40. Walczyk, C. et al. On the role of Ti adlayers for resistive switching in HfO2-based metal–insulator–metal structures: top versus bottom electrode integration. J. Vac. Sci. Technol. B 29, 01AD02 (2011).

    Article  Google Scholar 

  41. Hirose, S., Nakayama, A., Niimi, H., Kageyama, K. & Takagi, H. Resistance switching and retention behaviors in polycrystalline La-doped SrTiO3 ceramics chip devices. J. Appl. Phys. 104, 053712 (2008).

    Article  Google Scholar 

  42. Yao, J., Sun, Z., Zhong, L., Natelson, D. & Tour, J. M. Resistive switches and memories from silicon oxide. Nano Lett. 10, 4105–4110 (2010).

    Article  Google Scholar 

  43. Lörtscher, E., Ciszek, J. W., Tour, J. & Riel, H. Reversible and controllable switching of a single-molecule junction. Small 2, 973–977 (2006).

    Article  Google Scholar 

  44. Walczyk, C. et al. Impact of temperature on the resistive switching behavior of embedded HfO2-based RRAM devices. IEEE Trans. Electron Devices 58, 3124–3131 (2011).

    Article  Google Scholar 

  45. Ahn, C. et al. Temperature-dependent studies of the electrical properties and the conduction mechanism of HfOx-based RRAM. In Proc. Technical Program—2014 International Symposium on VLSI Technology, Systems and Application 1–2 (IEEE, 2014); https://doi.org/10.1109/VLSI-TSA.2014.6839685

  46. Shang, J. et al. Thermally stable transparent resistive random access memory based on all-oxide heterostructures. Adv. Funct. Mater. 24, 2171–2179 (2014).

    Article  Google Scholar 

  47. Fang, R., Chen, W., Gao, L., Yu, W. & Yu, S. Low-temperature characteristics of HfO. IEEE Electron Device Lett. 36, 567–569 (2015).

    Article  Google Scholar 

  48. Blonkowski, S. & Cabout, T. Bipolar resistive switching from liquid helium to room temperature. J. Phys. D 48, 345101 (2015).

    Article  Google Scholar 

  49. Takashima, D. Overview of FeRAMs: trends and perspectives. In Proc. 11th Annual Non-Volatile Memory Technology Symposium 36–41 (IEEE, 2011); https://doi.org/10.1109/NVMTS.2011.6137107

  50. Trentzsch, M. et al. A 28nm HKMG super low power embedded NVM technology based on ferroelectric FETs. In International Electron Devices Meeting 11.5.1–11.5.4 (IEEE, 2017); https://doi.org/10.1109/IEDM.2016.7838397

  51. Dünkel, S. et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22nm FDSOI and beyond. In International Electron Devices Meeting 19.7.1–19.7.4 (IEEE, 2018); https://doi.org/10.1109/IEDM.2017.8268425

  52. Chatterjee, K. et al. Self-aligned, gate last, FDSOI, ferroelectric gate memory device with 5.5-nm Hf0.8Zr0.2O2, high endurance and breakdown recovery. IEEE Electron Device Lett. 38, 1379–1382 (2017).

    Article  Google Scholar 

  53. Florent, K. et al. Vertical Ferroelectric HfO2 FET based on 3-D NAND architecture: towards dense low-power memory. In International Electron Devices Meeting 2.5.1–2.5.4 (IEEE, 2019); https://doi.org/10.1109/IEDM.2018.8614710

  54. Rowley, S. E. et al. Ferroelectric quantum criticality. Nat. Phys. 10, 367–372 (2014).

    Article  Google Scholar 

  55. Meng, X. J. et al. Temperature dependence of ferroelectric and dielectric properties of PbZr0.5Ti0.5O3 thin film based capacitors. Appl. Phys. Lett. 81, 4035–4037 (2002).

    Article  Google Scholar 

  56. Wang, Z. et al. Cryogenic characterization of antiferroelectric zirconia down to 50 mK. In Device Research Conference 85–85 (IEEE, 2019); https://doi.org/10.1109/DRC46940.2019.9046475

  57. Wang, Z. et al. Cryogenic characterization of a ferroelectric field-effect-transistor. Appl. Phys. Lett. 116, 042902 (2020).

    Article  Google Scholar 

  58. Na, T., Kang, S. H. & Jung, S. O. STT-MRAM sensing: a review. IEEE Trans. Circuits Syst. II 68, 12–18 (2021).

    Article  Google Scholar 

  59. Lang, L. et al. A low temperature functioning CoFeB/MgO-based perpendicular magnetic tunnel junction for cryogenic nonvolatile random access memory. Appl. Phys. Lett. 116, 022409 (2020).

    Article  Google Scholar 

  60. Rowlands, G. E. et al. A cryogenic spin-torque memory element with precessional magnetization dynamics. Sci. Rep. 9, 803 (2019).

    Article  Google Scholar 

  61. Yau, J. B., Fung, Y. K. K. & Gibson, G. W. Hybrid cryogenic memory cells for superconducting computing applications. In Proc. International Conference on Rebooting Computing 1–3 (IEEE, 2017); https://doi.org/10.1109/ICRC.2017.8123684

  62. Alam, S., Hossain, M. S. & Aziz, A. A non-volatile cryogenic random-access memory based on the quantum anomalous Hall effect. Sci. Rep. 11, 7892 (2021). This paper developed a cryogenic memory system using topological properties of materials.

    Article  Google Scholar 

  63. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    Article  Google Scholar 

  64. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  65. Lai, S. Current status of the phase change memory and its future. In International Electron Devices Meeting 255–258 (IEEE, 2003); https://doi.org/10.1109/iedm.2003.1269271

  66. Yi, H. T., Choi, T. & Cheong, S. W. Reversible colossal resistance switching in (La,Pr,Ca) MnO3: cryogenic nonvolatile memories. Appl. Phys. Lett. 95, 063509 (2009).

    Article  Google Scholar 

  67. Tahara, S., Ishida, I., Ajisawa, Y. & Wada, Y. Experimental vortex transitional nondestructive read-out Josephson memory cell. J. Appl. Phys. 65, 851–856 (1989). This paper proposed and demonstrated a superconducting memory for cryogenic applications.

    Article  Google Scholar 

  68. Tahara, S. et al. 4-Kbit Josephson nondestructive readout ram operated at 580 psec and 6.7 mW. IEEE Trans. Magn. 27, 2626–2633 (1991).

    Article  Google Scholar 

  69. Nagasawa, S., Numata, H., Hashimoto, Y. & Tahara, S. High-frequency clock operation of Josephson 256-word × 16-bit rams. IEEE Trans. Appl. Supercond. 9, 3708–3713 (1999).

    Article  Google Scholar 

  70. Nagasawa, S., Hinode, K., Satoh, T., Kitagawa, Y. & Hidaka, M. Design of all-dc-powered high-speed single flux quantum random access memory based on a pipeline structure for memory cell arrays. Supercond. Sci. Technol. 19, S325 (2006).

    Article  Google Scholar 

  71. Nagasawa, S., Hashimoto, Y., Numata, H. & Tahara, S. A 380 ps, 9.5 mW Josephson 4-Kbit RAM operated at a high bit yield. IEEE Trans. Appl. Supercond. 5, 2447–2452 (1995).

    Article  Google Scholar 

  72. Kirichenko, A. F., Mukhanov, O. A. & Brock, D. K. A single flux quantum cryogenic random access memory rapid single flux quantum digital electronics. In 7th International Superconductive Electronics Conference 124–127 (ISEC, 1999).

  73. Kirichenko, A. F., Sarwana, S., Brock, D. K. & Radpavar, M. Pipelined DC-powered SFQ RAM. IEEE Trans. Appl. Supercond. 11, 537–540 (2001).

  74. Yuh, P. F. A buffered nondestructive-readout Josephson memory cell with three gates. IEEE Trans. Magn. 27, 2876–2878 (1991).

  75. Yuh, P. F. A 2-kbit superconducting memory chip. IEEE Trans. Appl. Supercond. 3, 3013–3021 (1993).

    Article  Google Scholar 

  76. Polonsky, S. V., Kirichenko, A. F., Semenov, V. K. & Likharev, K. K. Rapid single flux quantum random access memory. IEEE Trans. Appl. Supercond. 5, 3000–3005 (1995).

    Article  Google Scholar 

  77. Alam, S., Jahangir, M. A. & Aziz, A. A compact model for superconductor–insulator–superconductor (SIS) Josephson junctions. IEEE Electron Device Lett. 41, 1249–1252 (2020).

    Article  Google Scholar 

  78. Polyakov, Y., Narayana, S. & Semenov, V. K. Flux trapping in superconducting circuits. IEEE Trans. Appl. Supercond. 17, 520–525 (2007).

    Article  Google Scholar 

  79. Narayana, S., Polyakov, Y. A. & Semenov, V. K. Evaluation of flux trapping in superconducting circuits. IEEE Trans. Appl. Supercond. 19, 640–643 (2009).

    Article  Google Scholar 

  80. Jackman, K. & Fourie, C. J. Flux trapping analysis in superconducting circuits. IEEE Trans. Appl. Supercond. 27, 1–5 (2017).

    Article  Google Scholar 

  81. Holmes, D. S., Ripple, A. L. & Manheimer, M. A. Energy-efficient superconducting computing—power budgets and requirements. IEEE Trans. Appl. Supercond. 23, 1701610–1701610 (2013).

    Article  Google Scholar 

  82. Manheimer, M. A. Cryogenic computing complexity program: phase 1 introduction. IEEE Trans. Appl. Supercond. 25, 1–4 (2015).

    Article  Google Scholar 

  83. Tolpygo, S. K. Superconductor digital electronics: Scalability and energy efficiency issues. Low. Temp. Phys. 42, 361–379 (2016).

    Article  Google Scholar 

  84. Tolpygo, S. K. et al. Inductance of circuit structures for MIT LL superconductor electronics fabrication process with 8 niobium layers. IEEE Trans. Appl. Supercond. 25, 1–5 (2015).

    Google Scholar 

  85. Braiman, Y., Nair, N., Rezac, J. & Imam, N. Memory cell operation based on small Josephson junctions arrays. Supercond. Sci. Technol. 29, 124003 (2016).

    Article  Google Scholar 

  86. Braiman, Y., Neschke, B., Nair, N., Imam, N. & Glowinski, R. Memory states in small arrays of Josephson junctions. Phys. Rev. E 94, 052223 (2016).

    Article  Google Scholar 

  87. Nair, N., Jafari-Salim, A., D’Addario, A., Imam, N. & Braiman, Y. Experimental demonstration of a Josephson cryogenic memory cell based on coupled Josephson junction arrays. Supercond. Sci. Technol. 32, 115012 (2019).

    Article  Google Scholar 

  88. Nair, N. & Braiman, Y. A ternary memory cell using small Josephson junction arrays. Supercond. Sci. Technol. 31, 115012 (2018).

    Article  Google Scholar 

  89. Miloshevsky, A., Nair, N., Imam, N. & Braiman, Y. High-Tc superconducting memory cell. J. Supercond. Nov. Magn. 35, 373–382 (2022).

  90. Hilgenkamp, H. Josephson memories. J. Supercond. Nov. Magn. 34, 1621–1625 (2020).

    Article  Google Scholar 

  91. Wada, Y. Josephson memory technology. Proc. IEEE 77, 1194–1207 (1989).

    Article  Google Scholar 

  92. Hidaka, Y. Superconductor magnetic memory using magnetic films. US patent 5,039,656 (1991).

  93. Ryazanov, V. V. et al. Magnetic Josephson junction technology for digital and memory applications. Phys. Procedia 36, 35–41 (2012). This paper proposed an alternative superconducting memory technology to improve the limited capacity of SIS JJ-based memories.

    Article  Google Scholar 

  94. Oboznov, V. A., Bol’ginov, V. V., Feofanov, A. K., Ryazanov, V. V. & Buzdin, A. I. Thickness dependence of the Josephson ground states of superconductor–ferromagnet–superconductor junctions. Phys. Rev. Lett. 96, 197003 (2006).

    Article  Google Scholar 

  95. Shelukhin, V. et al. Observation of periodic π-phase shifts in ferromagnet-superconductor multilayers. Phys. Rev. B 73, 174506 (2006).

    Article  Google Scholar 

  96. Robinson, J. W. A., Piano, S., Burnell, G., Bell, C. & Blamire, M. G. Critical current oscillations in strong ferromagnetic π junctions. Phys. Rev. Lett. 97, 177003 (2006).

    Article  Google Scholar 

  97. Niedzielski, B. M., Gingrich, E. C., Loloee, R., Pratt, W. P. & Birge, N. O. S/F/S Josephson junctions with single-domain ferromagnets for memory applications. Supercond. Sci. Technol. 28, 085012 (2015).

    Article  Google Scholar 

  98. Bol’ginov, V. V., Stolyarov, V. S., Sobanin, D. S., Karpovich, A. L. & Ryazanov, V. V. Magnetic switches based on Nb–PdFe–Nb Josephson junctions with a magnetically soft ferromagnetic interlayer. J. Exp. Theor. Phys. Lett. 95, 366–371 (2012).

    Article  Google Scholar 

  99. Glick, J. A., Loloee, R., Pratt, W. P. & Birge, N. O. Critical current oscillations of Josephson junctions containing PdFe manomagnets. IEEE Trans. Appl. Supercond. 27, 1–5 (2017).

    Article  Google Scholar 

  100. Dayton, I. M. et al. Experimental demonstration of a Josephson magnetic memory cell with a programmable φ-junction. IEEE Magn. Lett. 9, 1–5 (2018).

    Article  Google Scholar 

  101. Ryazanov, V. V. et al. Coupling of two superconductors through a ferromagnet: evidence for a π junction. Phys. Rev. Lett. 86, 2427–2430 (2001).

    Article  Google Scholar 

  102. Bannykh, A. A. et al. Josephson tunnel junctions with a strong ferromagnetic interlayer. Phys. Rev. B 79, 054501 (2009).

    Article  Google Scholar 

  103. Vernik, I. V. et al. Magnetic Josephson junctions with superconducting interlayer for cryogenic memory. IEEE Trans. Appl. Supercond. 23, 1701208–1701208 (2013).

    Article  Google Scholar 

  104. Larkin, T. I. et al. Ferromagnetic Josephson switching device with high characteristic voltage. Appl. Phys. Lett. 100, 222601 (2012). This paper incorporated an additional superconducting layer to the MJJ structure to make the switching speed compatible with SFQ circuits.

    Article  Google Scholar 

  105. Bakurskiy et al. Theoretical model of superconducting spintronic SIsFS devices. Appl. Phys. Lett. 102, 192603 (2013).

    Article  Google Scholar 

  106. Bergeret, F. S., Volkov, A. F. & Efetov, K. B. Enhancement of the Josephson current by an exchange field in superconductor–ferromagnet structures. Phys. Rev. Lett. 86, 3140–3143 (2001).

    Article  Google Scholar 

  107. Krivoruchko, V. N. & Koshina, E. A. From inversion to enhancement of the dc Josephson current in (formula presented) tunnel structures. Phys. Rev. B 64, 172511 (2001).

    Article  Google Scholar 

  108. Golubov, A. A., Kupriyanov, M. Y. & Fominov, Y. V. Critical current in SFIFS junctions. J. Exp. Theor. Phys. Lett. 75, 190–194 (2002).

    Article  Google Scholar 

  109. Barash, Y. S., Bobkova, I. V. & Kopp, T. Josephson current in S-FIF-S junctions: nonmonotonic dependence on misorientation angle. Phys. Rev. B 66, 140503 (2002).

    Article  Google Scholar 

  110. Bell, C. et al. Controllable Josephson current through a pseudospin-valve structure. Appl. Phys. Lett. 84, 1153–1155 (2004).

    Article  Google Scholar 

  111. Kontos, T. et al. Josephson junction through a thin ferromagnetic layer: negative coupling. Phys. Rev. Lett. 89, 137007 (2002).

    Article  Google Scholar 

  112. Blum, Y., Tsukernik, A., Karpovski, M. & Palevski, A. Oscillations of the superconducting critical current in Nb–Cu–Ni–Cu–Nb junctions. Phys. Rev. Lett. 89, 187004 (2002).

    Article  Google Scholar 

  113. Glick, J. A. et al. Critical current oscillations of elliptical Josephson junctions with single-domain ferromagnetic layers. J. Appl. Phys. 122, 133906 (2017).

    Article  Google Scholar 

  114. Baek, B., Rippard, W. H., Benz, S. P., Russek, S. E. & Dresselhaus, P. D. Hybrid superconducting-magnetic memory device using competing order parameters. Nat. Commun. 5, 3888 (2014).

    Article  Google Scholar 

  115. Golod, T., Iovan, A. & Krasnov, V. M. Single Abrikosov vortices as quantized information bits. Nat. Commun. 6, 8628 (2015).

    Article  Google Scholar 

  116. Stoner, E. C. & Wohlfarth, E. P. A mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27, 3475–3518 (1991).

    Article  Google Scholar 

  117. Goldobin, E. et al. Memory cell based on a φ Josephson junction. Appl. Phys. Lett. 102, 242602 (2013).

    Article  Google Scholar 

  118. Peotta, S. & Di Ventra, M. Superconducting memristors. Phys. Rev. Appl. 2, 034011 (2014).

    Article  Google Scholar 

  119. Alam, S., Hossain, M. S. & Aziz, A. A cryogenic memory array based on superconducting memristors. Appl. Phys. Lett. 119, 082602 (2021).

    Article  Google Scholar 

  120. Stewart, W. C. Current–voltage characteristics of Josephson junctions. Appl. Phys. Lett. 12, 277–280 (1968).

    Article  Google Scholar 

  121. McCumber, D. E. Effect of ac impedance on dc voltage–current characteristics of superconductor weak-link junctions. J. Appl. Phys. 39, 3113–3118 (1968).

    Article  Google Scholar 

  122. Ingold, G. L., Grabert, H. & Eberhardt, U. Cooper-pair current through ultrasmall Josephson junctions. Phys. Rev. B 50, 395 (1994).

    Article  Google Scholar 

  123. Van Den Brink, A. M., Schön, G. & Geerligs, L. J. Combined single-electron and coherent-Cooper-pair tunneling in voltage-biased Josephson junctions. Phys. Rev. Lett. 67, 3030 (1991).

    Article  Google Scholar 

  124. McCaughan, A. N. & Berggren, K. K. A superconducting-nanowire three-terminal electrothermal device. Nano Lett. 14, 5748–5753 (2014).

    Article  Google Scholar 

  125. Suleiman, M., Sarott, M. F., Trassin, M., Badarne, M. & Ivry, Y. Nonvolatile voltage-tunable ferroelectric-superconducting quantum interference memory devices. Appl. Phys. Lett. 119, 112601 (2021).

    Article  Google Scholar 

  126. Alam, S. et al. Cryogenic memory array based on ferroelectric SQUID and heater cryotron. In Device Research Conference 1–2 (IEEE, 2022); https://doi.org/10.1109/DRC55272.2022.9855813

  127. Ghoshal, U., Kroger, H. & Van Duzer, T. Superconductor–semiconductor memories. IEEE Trans. Appl. Supercond. 3, 2315–2318 (1993). This paper coined the concept of hybrid superconductor–semiconductor memories.

    Article  Google Scholar 

  128. Feng, Y. J. et al. Josephson–CMOS hybrid memory with ultra-high-speed interface circuit. IEEE Trans. Appl. Supercond. 13, 467–470 (2003).

    Article  Google Scholar 

  129. Van Duzer, T., Liu, Q., Meng, X., Whiteley, S. & Yoshikawa, N. High-speed interface amplifiers for SFQ-to-CMOS signal conversion. In International Superconductive Electronics Conference (ISEC, 2003).

  130. Liu, Q. et al. Simulation and measurements on a 64-kbit hybrid Josephson–CMOS memory. IEEE Trans. Appl. Supercond. 15, 415–418 (2005).

    Article  Google Scholar 

  131. Liu, Q. et al. Latency and power measurements on a 64-kb hybrid Josephson–CMOS memory. IEEE Trans. Appl. Supercond. 17, 526–529 (2007).

    Article  Google Scholar 

  132. Kuwabara, K., Jin, H., Yamanashi, Y. & Yoshikawa, N. Design and implementation of 64-kb CMOS static RAMs for Josephson–CMOS hybrid memories. IEEE Trans. Appl. Supercond. 23, 1700704–1700704 (2013).

    Article  Google Scholar 

  133. Tanaka, M. et al. Josephson-CMOS hybrid memory with nanocryotrons. IEEE Trans. Appl. Supercond. 27, 1–4 (2017).

    Google Scholar 

  134. Aziz, A. et al. Single-ended and differential MRAMs based on spin hall effect: a layout-aware design perspective. In Proc. IEEE Computer Society Annual Symposium on VLSI 333–338 (IEEE, 2015); https://doi.org/10.1109/ISVLSI.2015.52

  135. Nguyen, M. H. et al. Cryogenic memory architecture integrating spin Hall effect based magnetic memory and superconductive cryotron devices. Sci. Rep. 10, 248 (2020).

    Article  Google Scholar 

  136. Mukhanov, O. A., Kirichenko, A. F., Filippov, T. V. & Sarwana, S. Hybrid semiconductor–superconductor fast-readout memory for digital RF receivers. IEEE Trans. Appl. Supercond. 21, 797–800 (2011).

    Article  Google Scholar 

  137. Suzuki, H., Inoue, A., Imamura, T. & Hasuo, S. Josephson driver to interface Josephson junctions to semiconductor transistors. In International Electron Devices Meeting 290–293 (IEEE, 1988); https://doi.org/10.1109/iedm.1988.32814

  138. Ghoshal, U., Kishore, S., Feldman, A., Huynh, L. & Van Duzer, T. CMOS amplifier designs for Josephson–CMOS interface circuits. IEEE Trans. Appl. Supercond. 5, 2640–2643 (1995).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors conceived the idea of this Review. S.A. performed the literature analysis and collected data. All authors took part in writing the paper, discussed the data and contributed to the final paper. A.A. supervised the project.

Corresponding author

Correspondence to Ahmedullah Aziz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Swamit Tannu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, S., Hossain, M.S., Srinivasa, S.R. et al. Cryogenic memory technologies. Nat Electron 6, 185–198 (2023). https://doi.org/10.1038/s41928-023-00930-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-023-00930-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing