Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Time-resolved detection of spin–orbit torque switching of magnetization and exchange bias

Abstract

Current-induced magnetization switching driven by spin–orbit torques on sub-nanosecond timescales could be used to create fast and low-power spintronic devices. The time-resolved detection and analysis of switching trajectories in ferromagnet/antiferromagnet exchange-biased structures are the key to designing spin–orbit torque devices with high speed, but insight remains limited. Here we report the time-resolved detection of spin–orbit torque switching of the magnetization and exchange bias in platinum/cobalt/iridium–manganese heterostructures. Using time-resolved magneto-optical Kerr microscopy, combined with micromagnetic simulations, we show that the ferromagnets, as well as interfacial antiferromagnetic spins and exchange bias, can be partially switched by sub-nanosecond current pulses, which allows the switching probabilities to be flexibly controlled at multiple levels. We also show that the spin–orbit-torque-induced switching of the exchange bias, which intimately depends on the current density, can stabilize multilevelled magnetization switching within sub-nanosecond current pulses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental setup and time-resolved SOT switching.
Fig. 2: Reversal process of magnetization as a function of delay time.
Fig. 3: Quasi-static-current-induced magnetization reversal with a sequence of different external Hx values.
Fig. 4: Reversal of exchange bias by nanosecond current pulses.
Fig. 5: Micromagnetic simulations of the time-resolved SOT switching process.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    Article  MathSciNet  Google Scholar 

  2. Jhuria, K. et al. Spin–orbit torque switching of a ferromagnet with picosecond electrical pulses. Nat. Electron. 3, 680–686 (2020).

    Article  Google Scholar 

  3. Song, C. et al. Spin-orbit torques: materials, mechanisms, performances, and potential applications. Prog. Mater. Sci. 118, 100761 (2021).

    Article  Google Scholar 

  4. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  Google Scholar 

  5. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  6. Fukami, S., Zhang, C., DuttaGupta, S., Kurenkov, A. & Ohno, H. Magnetization switching by spin–orbit torque in an antiferromagnet–ferromagnet bilayer system. Nat. Mater. 15, 535–541 (2016).

    Article  Google Scholar 

  7. Lau, Y., Betto, D., Rode, K., Coey, J. M. D. & Stamenov, P. Spin–orbit torque switching without an external field using interlayer exchange coupling. Nat. Nanotechnol. 11, 758–762 (2016).

    Article  Google Scholar 

  8. Oh, Y. et al. Field-free switching of perpendicular magnetization through spin–orbit torque in antiferromagnet/ferromagnet/oxide structures. Nat. Nanotechnol. 11, 878–884 (2016).

    Article  Google Scholar 

  9. van der Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Article  Google Scholar 

  10. Lin, P. et al. Manipulating exchange bias by spin–orbit torque. Nat. Mater. 18, 335–341 (2019).

    Article  Google Scholar 

  11. Peng, S. et al. Exchange bias switching in an antiferromagnet/ferromagnet bilayer driven by spin–orbit torque. Nat. Electron. 3, 757–764 (2020).

    Article  Google Scholar 

  12. Zhang, E. Z. et al. Manipulating antiferromagnetic interfacial states by spin-orbit torques. Phys. Rev. B 104, 134408 (2021).

    Article  Google Scholar 

  13. Baltz, V. et al. Antiferromagnet spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  MathSciNet  Google Scholar 

  14. Gurung, G., Shao, D. & Tsymbal, E. Y. Spin-torque switching of noncollinear antiferromagnetic antiperovskites. Phys. Rev. B 101, 140405 (2020).

    Article  Google Scholar 

  15. Kurenkov, A. et al. Artificial neuron and synapse realized in an antiferromagnet/ferromagnet heterostructure using dynamics of spin–orbit torque switching. Adv. Mater. 31, 1900636 (2019).

    Article  Google Scholar 

  16. Kašpar, Z. et al. Quenching of an antiferromagnet into high resistivity states using electrical or ultrashort optical pulses. Nat. Electron. 4, 30–37 (2021).

    Article  Google Scholar 

  17. Krishnaswamy, G. et al. Multidomain memristive switching of Pt38Mn62/[Co/Ni]n multilayers. Phys. Rev. Appl. 14, 044036 (2020).

    Article  Google Scholar 

  18. Decker, M. M. et al. Time resolved measurements of the switching trajectory of Pt/Co elements induced by spin-orbit torques. Phys. Rev. Lett. 118, 257201 (2017).

    Article  Google Scholar 

  19. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    Article  Google Scholar 

  20. Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    Article  Google Scholar 

  21. Legrand, W., Ramaswamy, R., Mishra, R. & Yang, H. Coherent subnanosecond switching of perpendicular magnetization by the fieldlike spin-orbit torque without an external magnetic field. Phys. Rev. Appl. 3, 064012 (2015).

    Article  Google Scholar 

  22. Grimaldi, E. et al. Single-shot dynamics of spin-orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    Article  Google Scholar 

  23. Kurenkov, A., Fukami, S. & Ohno, H. Neuromorphic computing with antiferromagnetic spintronics. J. Appl. Phys. 128, 010902 (2020).

    Article  Google Scholar 

  24. Zhang, W., Jungfleisch, M. B., Jiang, W., Pearson, J. E. & Hoffmann, A. Spin Hall effects in metallic antiferromagnets. Phys. Rev. Lett. 113, 196602 (2014).

    Article  Google Scholar 

  25. Frangou, L. et al. Enhanced spin pumping efficiency in antiferromagnetic IrMn thin films around the magnetic phase transition. Phys. Rev. Lett. 116, 077203 (2016).

    Article  Google Scholar 

  26. Garello, K. et al. Ultrafast magnetization switching by spin-orbit torques. Appl. Phys. Lett. 105, 212402 (2014).

    Article  Google Scholar 

  27. Lee, K. S., Lee, S. W., Min, B. C. & Lee, K. J. Thermally activated switching of perpendicular magnet by spin-orbit spin torque. Appl. Phys. Lett. 104, 072413 (2014).

    Article  Google Scholar 

  28. Yoon, J. et al. Anomalous spin-orbit torque switching due to field-like torque–assisted domain wall reflection. Sci. Adv. 3, 1603099 (2017).

    Article  Google Scholar 

  29. Fitzsimmons, M. R. et al. Antiferromagnetic domain size and exchange bias. Phys. Rev. B 77, 224406 (2008).

    Article  Google Scholar 

  30. Nogués, J. & Schuller, I. K. Exchange bias. J. Magn. Magn. Mater. 198, 203–232 (1999).

    Article  Google Scholar 

  31. Kaeswurm, B. & O’Grady, K. The origin of athermal training in polycrystalline metallic exchange bias thin films. Appl. Phys. Lett. 99, 222508 (2011).

    Article  Google Scholar 

  32. Vallobra, P. et al. Manipulating exchange bias using all-optical helicity-dependent switching. Phys. Rev. B 96, 144403 (2017).

    Article  Google Scholar 

  33. O’Grady, K., Fernandez-Outon, L. E. & Vallejo-Fernandez, G. A new paradigm for exchange bias in polycrystalline thin films. J. Magn. Magn. Mater. 322, 883–899 (2010).

    Article  Google Scholar 

  34. Elphick, K., O’Grady, K. & Vallejo-Fernandez, G. Perpendicular exchange bias in (Co/Pt)n multilayers. IEEE Trans. Magn. 55, 4800106 (2019).

    Article  Google Scholar 

  35. Zhou, J. et al. Magnetic asymmetry induced anomalous spin-orbit torque in IrMn. Phys. Rev. B 101, 184403 (2020).

    Article  Google Scholar 

  36. Vallejo-Fernandez, G., Aley, N. P., Chapman, J. N. & O’Grady, K. Measurement of the attempt frequency in antiferromagnets. Appl. Phys. Lett. 97, 222505 (2010).

    Article  Google Scholar 

  37. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  Google Scholar 

  38. Clercq, J. D., Vansteenkiste, A., Abes, M., Temst, K. & Waeyenberge, B. V. Modelling exchange bias with MuMax3. J. Phys. D: Appl. Phys. 49, 435001 (2016).

    Article  Google Scholar 

  39. Clercq, J. D., Leliaert, J. & Waeyenberge, B. V. Modelling compensated antiferromagnetic interfaces with MuMax3. J. Phys. D: Appl. Phys. 50, 425002 (2017).

    Article  Google Scholar 

  40. Garello, K. et al. Symmetry and magnitude of spin–orbit torques in ferromagnetic heterostructures. Nat. Nanotechnol. 8, 587–593 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

Y.W. is grateful for the support from the Alexander von Humboldt Foundation. This work was financially supported by the National Natural Science Foundation of China (grant no. 62174095), German Science Foundation (DFG) via SFB 1277 and the Natural Science Foundation of Beijing Municipality (grant no. JQ20010). This work was partially supported by the Advanced Embedded Memory with 3 Dimensional Integrated Circuits (MOST110-2218-E-492-004-MBK) from Angstrom Semiconductor Initiative of Taiwan Semiconductor Research Institute, Ministry of Science and Technology, Taiwan.

Author information

Authors and Affiliations

Authors

Contributions

C.H.B. and Y.W. planned the study. Y.W. fabricated the devices and collected and analysed the data. T.T. and D.Z. carried out the micromagnetic calculations. P.-H.L. and C.-H.L. grew the samples and performed the magnetization measurements. Y.W., A.N. and J.S. carried out the MOKE measurements. Y.W. wrote the manuscript with input from T.T., C.H.B., C.S., H.W. and Q.D. All the authors discussed the results.

Corresponding authors

Correspondence to Yuyan Wang or Christian H. Back.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Robert Carpenter and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–7, Figs. 1–18 and discussion.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Taniguchi, T., Lin, PH. et al. Time-resolved detection of spin–orbit torque switching of magnetization and exchange bias. Nat Electron 5, 840–848 (2022). https://doi.org/10.1038/s41928-022-00870-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00870-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing