Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sideband-free space–time-coding metasurface antennas

Abstract

Applications such as microwave wireless communications, optical light fidelity, and light detection and ranging systems require advanced interfaces that can couple guided waves from in-plane sources into free space and manipulate the extracted free-space waves. Spatiotemporally modulated metasurfaces can control electromagnetic waves, but such systems are typically limited to free-space-only and waveguide-only platforms. Here we report a 1-bit space–time-coding metasurface antenna that can extract and mould guided waves into any desired free-space waves in both space and frequency domains. The waveguide-integrated metasurface antenna also provides a self-filtering phenomenon that overcomes the issue of sideband pollution found in traditional spatiotemporally modulated metasurfaces. To illustrate the capabilities of the approach, we use the metasurface antenna for high-efficiency frequency conversion, fundamental-frequency continuous beam scanning and independent control of multiple harmonics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Conceptual illustration of the STC metasurface antenna.
Fig. 2: High-efficiency frequency conversion and beam steering.
Fig. 3: Arbitrary harmonic frequency conversion.
Fig. 4: Fundamental-frequency beam scanning.
Fig. 5: Multiharmonic independent control.
Fig. 6: Prototype design, modelling and characterization.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the theoretical modelling of the metasurface antennas are available from the corresponding authors upon reasonable request.

References

  1. Smith, D. R., Pendry, J. B. & Wiltshire, M. C. K. Metamaterials and negative refractive index. Science 305, 788–792 (2004).

    Google Scholar 

  2. Zheludev, N. I. & Kivshar, Y. S. From metamaterials to metadevices. Nat. Mater. 11, 917–924 (2012).

    Google Scholar 

  3. Glybovski, S. B., Tretyakov, S. A., Belov, P. A., Kivshar, Y. S. & Simovski, C. R. Metasurfaces: from microwaves to visible. Phys. Rep. 634, 1–72 (2016).

    MathSciNet  Google Scholar 

  4. Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

  5. Yu, N. et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    Google Scholar 

  6. Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).

    Google Scholar 

  7. Karimi, E. et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface. Light Sci. Appl. 3, e167 (2014).

    Google Scholar 

  8. Ren, H. et al. Metasurface orbital angular momentum holography. Nat. Commun. 10, 2986 (2019).

    Google Scholar 

  9. Li, L. et al. Electromagnetic reprogrammable coding-metasurface holograms. Nat. Commun. 8, 197 (2017).

    Google Scholar 

  10. Ni, X., Kildishev, A. V. & Shalaev, V. M. Metasurface holograms for visible light. Nat. Commun. 4, 2807 (2013).

    Google Scholar 

  11. Chen, P.-Y. et al. Nanostructured graphene metasurface for tunable terahertz cloaking. New J. Phys. 15, 123029 (2013).

    Google Scholar 

  12. Chen, P.-Y. & Alu, A. Mantle cloaking using thin patterned metasurfaces. Phys. Rev. B 84, 205110 (2011).

    Google Scholar 

  13. Chu, C. H. et al. Active dielectric metasurface based on phase‐change medium. Laser Photonics Rev. 10, 986–994 (2016).

    Google Scholar 

  14. Shaltout, A. M., Shalaev, V. M. & Brongersma, M. L. Spatiotemporal light control with active metasurfaces. Science 364, eaat3100 (2019).

  15. Cui, T. J., Qi, M. Q., Wan, X., Zhao, J. & Cheng, Q. Coding metamaterials, digital metamaterials and programmable metamaterials. Light Sci. Appl. 3, e218 (2014).

    Google Scholar 

  16. Zhang, L. et al. Space-time-coding digital metasurfaces. Nat. Commun. 9, 4334 (2018).

    Google Scholar 

  17. Correas-Serrano, D., Alù, A. & Gomez-Diaz, J. S. Magnetic-free nonreciprocal photonic platform based on time-modulated graphene capacitors. Phys. Rev. B 98, 165428 (2018).

    Google Scholar 

  18. Correas-Serrano, D. et al. Nonreciprocal graphene devices and antennas based on spatiotemporal modulation. IEEE Antennas Wireless Propag. Lett. 15, 1529–1532 (2015).

    Google Scholar 

  19. Shi, Y. & Fan, S. Dynamic non-reciprocal meta-surfaces with arbitrary phase reconfigurability based on photonic transition in meta-atoms. Appl. Phys. Lett. 108, 021110 (2016).

    Google Scholar 

  20. Sounas, D. L., Caloz, C. & Alu, A. Giant non-reciprocity at the subwavelength scale using angular momentum-biased metamaterials. Nat. Commun. 4, 2407 (2013).

    Google Scholar 

  21. Dai, J. Y., Zhao, J., Cheng, Q. & Cui, T. J. Independent control of harmonic amplitudes and phases via a time-domain digital coding metasurface. Light Sci. Appl. 7, 90 (2018).

    Google Scholar 

  22. Williamson, I. A. D. et al. Integrated nonreciprocal photonic devices with dynamic modulation. Proc. IEEE 108, 1759–1784 (2020).

    Google Scholar 

  23. Doerr, C. R., Dupuis, N. & Zhang, L. Optical isolator using two tandem phase modulators. Opt. Lett. 36, 4293–4295 (2011).

    Google Scholar 

  24. Chen, H. et al. Real-time observation of frequency Bloch oscillations with fibre loop modulation. Light Sci. Appl. 10, 48 (2021).

    Google Scholar 

  25. Liu, Q. et al. Efficient mode transfer on a compact silicon chip by encircling moving exceptional points. Phys. Rev. Lett. 124, 153903 (2020).

    Google Scholar 

  26. Qin, C. et al. Spectrum control through discrete frequency diffraction in the presence of photonic gauge potentials. Phys. Rev. Lett. 120, 133901 (2018).

    Google Scholar 

  27. Cardin, A. E. et al. Surface-wave-assisted nonreciprocity in spatio-temporally modulated metasurfaces. Nat. Commun. 11, 1469 (2020).

    Google Scholar 

  28. Guo, X., Ding, Y., Duan, Y. & Ni, X. Nonreciprocal metasurface with space–time phase modulation. Light Sci. Appl. 8, 123 (2019).

    Google Scholar 

  29. Zhang, L. et al. Breaking reciprocity with space‐time‐coding digital metasurfaces. Adv. Mater. 31, 1904069 (2019).

    Google Scholar 

  30. Zang, J. W. et al. Nonreciprocal wavefront engineering with time-modulated gradient metasurfaces. Phys. Rev. Appl. 11, 054054 (2019).

    Google Scholar 

  31. Wang, X. & Caloz, C. Spread-spectrum selective camouflaging based on time-modulated metasurface. IEEE Trans. Antennas Propag. 69, 286–295 (2020).

    Google Scholar 

  32. Zhang, X. G. et al. Smart Doppler cloak operating in broad band and full polarizations. Adv. Mater. 33, 2007966 (2021).

    Google Scholar 

  33. Ramaccia, D., Sounas, D. L., Alù, A., Toscano, A. & Bilotti, F. Doppler cloak restores invisibility to objects in relativistic motion. Phys. Rev. B 95, 075113 (2017).

    Google Scholar 

  34. Liu, M., Powell, D. A., Zarate, Y. & Shadrivov, I. V. Huygens’ metadevices for parametric waves. Phys. Rev. X 8, 031077 (2018).

    Google Scholar 

  35. Salary, M. M., Farazi, S. & Mosallaei, H. A dynamically modulated all‐dielectric metasurface doublet for directional harmonic generation and manipulation in transmission. Adv. Opt. Mater. 7, 1900843 (2019).

    Google Scholar 

  36. Dai, J. Y. et al. Arbitrary manipulations of dual harmonics and their wave behaviors based on space-time-coding digital metasurface. Appl. Phys. Rev. 7, 041408 (2020).

    Google Scholar 

  37. Ramaccia, D., Sounas, D. L., Alu, A., Toscano, A. & Bilotti, F. Phase-induced frequency conversion and Doppler effect with time-modulated metasurfaces. IEEE Trans. Antennas Propag. 68, 1607–1617 (2019).

    Google Scholar 

  38. Dai, J. Y. et al. High-efficiency synthesizer for spatial waves based on space-time-coding digital metasurface. Laser Photonics Rev. 14, 1900133 (2020).

    Google Scholar 

  39. Lee, K. et al. Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photon. 12, 765–773 (2018).

    Google Scholar 

  40. Wu, Z. & Grbic, A. Serrodyne frequency translation using time-modulated metasurfaces. IEEE Trans. Antennas Propag. 68, 1599–1606 (2019).

    Google Scholar 

  41. Dai, J. Y. et al. Wireless communications through a simplified architecture based on time‐domain digital coding metasurface. Adv. Mater. Technol. 4, 1900044 (2019).

    Google Scholar 

  42. Zhang, L. et al. A wireless communication scheme based on space-and frequency-division multiplexing using digital metasurfaces. Nat. Electron. 4, 218–227 (2021).

    Google Scholar 

  43. Chen, M. Z. et al. Accurate and broadband manipulations of harmonic amplitudes and phases to reach 256 QAM millimeter-wave wireless communications by time-domain digital coding metasurface. Natl Sci. Rev. 9, nwab134 (2022).

    Google Scholar 

  44. Taravati, S. & Caloz, C. Mixer-duplexer-antenna leaky-wave system based on periodic space-time modulation. IEEE Trans. Antennas Propag. 65, 442–452 (2016).

    Google Scholar 

  45. Taravati, S. & Eleftheriades, G. V. Space-time medium functions as a perfect antenna-mixer-amplifier transceiver. Phys. Rev. Appl. 14, 054017 (2020).

    Google Scholar 

  46. Daly, M. P. & Bernhard, J. T. Directional modulation technique for phased arrays. IEEE Trans. Antennas Propag. 57, 2633–2640 (2009).

    Google Scholar 

  47. Parker, D. & Zimmermann, D. C. Phased arrays - part 1: theory and architectures. IEEE Trans. Microw. Theory Techn. 50, 678–687 (2002).

    Google Scholar 

  48. Papes, M. et al. Fiber-chip edge coupler with large mode size for silicon photonic wire waveguides. Opt. Express 24, 5026–5038 (2016).

    Google Scholar 

  49. Masturzo, S. A., Yarrison-Rice, J. M., Jackson, H. E. & Boyd, J. T. Grating couplers fabricated by electron-beam lithography for coupling free-space light into nanophotonic devices. IEEE Trans. Nanotechnol. 6, 622–626 (2007).

    Google Scholar 

  50. Minatti, G. et al. Modulated metasurface antennas for space: synthesis, analysis and realizations. IEEE Trans. Antennas Propag. 63, 1288–1300 (2014).

    MathSciNet  MATH  Google Scholar 

  51. Yurduseven, O. & Smith, D. R. Dual-polarization printed holographic multibeam metasurface antenna. IEEE Antennas Wirel. Propag. Lett. 16, 2738–2741 (2017).

    Google Scholar 

  52. Smith, D. R., Yurduseven, O., Mancera, L. P., Bowen, P. & Kundtz, N. B. Analysis of a waveguide-fed metasurface antenna. Phys. Rev. Appl. 8, 054048 (2017).

    Google Scholar 

  53. Guo, X., Ding, Y., Chen, X., Duan, Y. & Ni, X. Molding free-space light with guided wave–driven metasurfaces. Sci. Adv. 6, eabb4142 (2020).

    Google Scholar 

  54. Kummer, W., Villeneuve, A., Fong, T. & Terrio, F. Ultra-low sidelobes from time-modulated arrays. IEEE Trans. Antennas Propag. 11, 633–639 (1963).

    Google Scholar 

  55. Yang, S., Gan, Y. B., Qing, A. & Tan, P. K. Design of a uniform amplitude time modulated linear array with optimized time sequences. IEEE Trans. Antennas Propag. 53, 2337–2339 (2005).

    Google Scholar 

  56. Li, G., Yang, S., Chen, Y. & Nie, Z.-P. A novel electronic beam steering technique in time modulated antenna array. Prog. Electromagn. Res. 97, 391–405 (2009).

    Google Scholar 

  57. Wu, G.-B., Zhang, Q.-L., Chan, K. F., Chen, B.-J. & Chan, C. H. Amplitude-modulated (AM) leaky-wave antennas. IEEE Trans. Antennas Propag. 69, 3664–3676 (2020).

  58. Molisch, A. F. Wireless Communications Vol. 34 (John Wiley & Sons, 2012).

  59. Ding, Y. et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation. ACS Photonics 9, 398–404 (2022).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Hong Kong Research Grants Council of the Hong Kong SAR under grant T42-103/16-N (received by C.H.C.); the Guangdong Provincial Department of Science and Technology, China, under project no. 2020B1212030002 (received by C.H.C.); the Basic Scientific Center of Information Metamaterials of the National Natural Science Foundation of China under grant 6228810001 (received by T.J.C. and Q.C.); the National Key Research and Development Program of China under grants 2017YFA0700201, 2017YFA0700202, 2017YFA0700203 and 2018YFA0701904 (received by T.J.C. and Q.C.); the National Natural Science Foundation of China under grant 61731010 (received by Q.C.) and 62201139 (received by J.Y.D.); the 111 Project under grant 111-2-05 (received by T.J.C.); the Jiangsu Province Frontier Leading Technology Basic Research Project under grant BK20212002 (received by T.J.C.); the Fundamental Research Funds for the Central Universities under grants 2242022k30004 (received by Q.C.) and 2242022R10185 (received by J.Y.D.); and the National Science Foundation of China (NSFC) for Distinguished Young Scholars of China under grant 62225108 (received by Q.C.). We gratefully acknowledge K. F. Chan of the State Key Laboratory of Terahertz and Millimeter Waves (City University of Hong Kong) for his help in the metasurface fixture fabrication.

Author information

Authors and Affiliations

Authors

Contributions

Q.C., T.J.C. and C.H.C. suggested the designs, planned and supervised the entire study, and led the project. G.-B.W. and J.Y.D. conceived the idea of this work. G.-B.W. designed the metasurface, and J.Y.D. designed the experiments. G.-B.W. and J.Y.D. carried out the measurements and data analysis. G.-B.W., J.Y.D., Q.C., T.J.C. and C.H.C. contributed to the writing of the paper. All the authors discussed the theoretical modelling and numerical simulations, and reviewed the manuscript.

Corresponding authors

Correspondence to Jun Yan Dai, Qiang Cheng, Tie Jun Cui or Chi Hou Chan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Haoran Ren and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–12, Figs. 1–14, Tables 1–4 and Equations (1)–(5).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, GB., Dai, J.Y., Cheng, Q. et al. Sideband-free space–time-coding metasurface antennas. Nat Electron 5, 808–819 (2022). https://doi.org/10.1038/s41928-022-00857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00857-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing