Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-Abelian gauge fields in circuit systems

Abstract

Circuits can provide a platform to study novel physics and have been used, for example, to explore various topological phases. Gauge fields—particularly, non-Abelian gauge fields—can play a pivotal role in the design and modulation of novel physical states, but their circuit implementation has so far been limited. Here we show that non-Abelian gauge fields can be synthesized in circuits created from building blocks that consist of capacitors, inductors and resistors. With these building blocks, we create circuit designs for the spin–orbit interaction and the topological Chern state, which are phenomena that represent non-Abelian gauge fields in momentum space. We also use the approach to design non-reciprocal circuits that can be used to implement the non-Abelian Aharonov–Bohm effect in real space.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Building blocks for non-Abelian gauge field in the circuit.
Fig. 2: SOI circuit.
Fig. 3: Topological Chern circuit.
Fig. 4: Non-reciprocal circuit that generates a non-Abelian phase factor.
Fig. 5: Real-space non-Abelian Aharonov–Bohm effect.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Osterloh, K., Baig, M., Santos, L., Zoller, P. & Lewenstein, M. Cold atoms in non-Abelian gauge potentials: from the Hofstadter ‘moth’ to lattice gauge theory. Phys. Rev. Lett. 95, 010403 (2005).

    Article  Google Scholar 

  2. Lin, Y.-J., Jiménez-García, K. & Spielman, I. B. Spin–orbit-coupled Bose–Einstein condensates. Nature 471, 83–86 (2011).

    Article  Google Scholar 

  3. Huang, L. et al. Experimental realization of two-dimensional synthetic spin–orbit coupling in ultracold Fermi gases. Nat. Phys. 12, 540–544 (2016).

    Article  Google Scholar 

  4. Wu, Z. et al. Realization of two-dimensional spin-orbit coupling for Bose-Einstein condensates. Science 354, 83–88 (2016).

    Article  Google Scholar 

  5. Cooper, N. R., Dalibard, J. & Spielman, I. B. Topological bands for ultracold atoms. Rev. Mod. Phys. 91, 015005 (2019).

    Article  MathSciNet  Google Scholar 

  6. Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).

    Article  Google Scholar 

  7. Iadecola, T., Schuster, T. & Chamon, C. Non-Abelian braiding of light. Phys. Rev. Lett. 117, 073901 (2016).

    Article  Google Scholar 

  8. Chen, Y. et al. Non-Abelian gauge field optics. Nat. Commun. 10, 3125 (2019).

    Article  Google Scholar 

  9. Rechcińska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article  Google Scholar 

  10. Yang, Y. et al. Synthesis and observation of non-Abelian gauge fields in real space. Science 365, 1021–1025 (2019).

    Article  MathSciNet  Google Scholar 

  11. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  MathSciNet  Google Scholar 

  12. Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photon. 15, 193–196 (2021).

    Article  Google Scholar 

  13. Lim, H.-T., Togan, E., Kroner, M., Miguel-Sanchez, J. & Imamoglu, A. Electrically tunable artificial gauge potential for polaritons. Nat. Commun. 8, 14540 (2017).

    Article  Google Scholar 

  14. Fruchart, M., Zhou, Y. & Vitelli, V. Dualities and non-Abelian mechanics. Nature 577, 636–640 (2020).

    Article  Google Scholar 

  15. Jotzu, G. et al. Experimental realization of the topological Haldane model with ultracold fermions. Nature 515, 237–240 (2014).

    Article  Google Scholar 

  16. Sugawa, S., Salces-Carcoba, F., Perry, A. R., Yue, Y. & Spielman, I. B. Second Chern number of a quantum-simulated non-Abelian Yang monopole. Science 360, 1429–1434 (2018).

    Article  MathSciNet  Google Scholar 

  17. Wu, Q., Soluyanov, A. A. & Bzdusek, T. Non-Abelian band topology in noninteracting metals. Science 365, 1273–1277 (2019).

    Article  MathSciNet  Google Scholar 

  18. Mezzacapo, A. et al. Non-Abelian SU(2) lattice gauge theories in superconducting circuits. Phys. Rev. Lett. 115, 240502 (2015).

    Article  MathSciNet  Google Scholar 

  19. Ningyuan, J., Owens, C., Sommer, A., Schuster, D. & Simon, J. Time- and site-resolved dynamics in a topological circuit. Phys. Rev. X 5, 021031 (2015).

    Google Scholar 

  20. Albert, V. V., Glazman, L. I. & Jiang, L. Topological properties of linear circuit lattices. Phys. Rev. Lett. 114, 173902 (2015).

    Article  MathSciNet  Google Scholar 

  21. Lee, C. H. et al. Topolectrical circuits. Commun. Phys. 1, 39 (2018).

    Article  Google Scholar 

  22. Luo, K., Yu, R. & Weng, H. Topological nodal states in circuit lattice. Research 2018, 6793752 (2018).

    Article  Google Scholar 

  23. Zhao, E. Topological circuits of inductors and capacitors. Ann. Phys. 399, 289–313 (2018).

    Article  MathSciNet  Google Scholar 

  24. Lu, Y. et al. Probing the Berry curvature and Fermi arcs of a Weyl circuit. Phys. Rev. B 99, 020302 (2019).

    Article  Google Scholar 

  25. Hofmann, T., Helbig, T., Lee, C. H., Greiter, M. & Thomale, R. Chiral voltage propagation and calibration in a topolectrical Chern circuit. Phys. Rev. Lett. 122, 247702 (2019).

    Article  Google Scholar 

  26. Haenel, R., Branch, T. & Franz, M. Chern insulators for electromagnetic waves in electrical circuit networks. Phys. Rev. B 99, 235110 (2019).

    Article  Google Scholar 

  27. Imhof, S. et al. Topolectrical-circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).

    Article  Google Scholar 

  28. Ezawa, M. Higher-order topological electric circuits and topological corner resonance on the breathing kagome and pyrochlore lattices. Phys. Rev. B 98, 201402 (2018).

    Article  Google Scholar 

  29. Bao, J. et al. Topoelectrical circuit octupole insulator with topologically protected corner states. Phys. Rev. B 100, 201406 (2019).

    Article  Google Scholar 

  30. Serra-Garcia, M., Süsstrunk, R. & Huber, S. D. Observation of quadrupole transitions and edge mode topology in an LC circuit network. Phys. Rev. B 99, 020304 (2019).

    Article  Google Scholar 

  31. Ni, X., Xiao, Z., Khanikaev, A. B. & Alù, A. Robust multiplexing with topolectrical higher-order Chern insulators. Phys. Rev. Appl. 13, 064031 (2020).

    Article  Google Scholar 

  32. Yu, R., Zhao, Y. X. & Schnyder, A. P. 4D spinless topological insulator in a periodic electric circuit. Natl Sci. Rev. 7, 1288–1295 (2020).

    Article  Google Scholar 

  33. Wang, Y., Price, H. M., Zhang, B. & Chong, Y. D. Circuit implementation of a four-dimensional topological insulator. Nat. Commun. 11, 2356 (2020).

    Article  Google Scholar 

  34. Yang, C. N. & Mills, R. L. Conservation of isotopic spin and isotopic gauge invariance. Phys. Rev. 96, 191–195 (1954).

    Article  MathSciNet  Google Scholar 

  35. Bychkov, Y. A. & Rashba, É. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 39, 78 (1984).

    Google Scholar 

  36. Dresselhaus, G. Spin-orbit coupling effects in zinc blende structures. Phys. Rev. 100, 580–586 (1955).

    Article  Google Scholar 

  37. Özdemir, Ş. K., Rotter, S., Nori, F. & Yang, L. Parity-time symmetry and exceptional points in photonics. Nat. Mater. 18, 783–798 (2019).

    Article  Google Scholar 

  38. Rafi-Ul-Islam, S. M., Siu, Z. B. & Jalil, M. B. A. Non-Hermitian topological phases and exceptional lines in topolectrical circuits. New J. Phys. 23, 033014 (2021).

    Article  MathSciNet  Google Scholar 

  39. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank H. M. Weng, C. Fang, D. Zhang, H. Wang and S. Chang for valuable discussions. R.Y. acknowledges support from the National Key Research and Development Program of China (nos. 2017YFA0304700 and 2017YFA0303402), the National Natural Science Foundation of China (no. 11874048) and the Beijing National Laboratory for Condensed Matter Physics. F.S. acknowledges support from the National Natural Science Foundation of China (nos. 92161201, 12025404, 11904165 and 11904166).

Author information

Authors and Affiliations

Authors

Contributions

R.Y. supervised the project. J.W., Z.W. and R.Y. drew the circuit diagram of the SOI PCB. Z.W. and R.Y. measured the experimental data of the SOI circuit. Z.Y., Y.H. and R.Y. drew the circuit diagram of the Chern PCB. Z.W., T.W., Z.Y., Y.H. and Z.S. measured the experimental data of the Chern circuit. Z.W., Y.B., S.Z. and F.F. measured the experimental data of the non-Abelian Aharonov–Bohm effect. J.W. wrote part of the data acquisition program for the experimental instruments. F.S. and R.Y. analysed the data.

Corresponding authors

Correspondence to Fengqi Song or Rui Yu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Biao Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6, Sections 1–4 and Tables 1 and 2.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, J., Wang, Z., Biao, Y. et al. Non-Abelian gauge fields in circuit systems. Nat Electron 5, 635–642 (2022). https://doi.org/10.1038/s41928-022-00833-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00833-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing