Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

How to report and benchmark emerging field-effect transistors

An Author Correction to this article was published on 24 August 2022

This article has been updated

Abstract

The use of organic, oxide and low-dimensional materials in field-effect transistors has now been studied for decades. However, properly reporting and comparing device performance remains challenging due to the interdependency of multiple device parameters. The interdisciplinarity of this research community has also led to a lack of consistent reporting and benchmarking guidelines. Here we propose guidelines for reporting and benchmarking key field-effect transistor parameters and performance metrics. We provide an example of this reporting and benchmarking process using a two-dimensional semiconductor field-effect transistor. Our guidelines should help promote an improved approach for assessing device performance in emerging field-effect transistors, helping the field to progress in a more consistent and meaningful way.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Basic device structure and electrical characteristics.
Fig. 2: Example of reporting device performance for monolayer Au-contacted MoS2 FETs.
Fig. 3: Example benchmarking device performance of monolayer MoS2 FETs.

Data availability

The data used in this paper are available from the corresponding authors upon reasonable request.

Change history

References

  1. Chen, Z. et al. An integrated logic circuit assembled on a single carbon nanotube. Science 311, 1735 (2006).

    Google Scholar 

  2. Franklin, A. D. et al. Sub-10-nm carbon nanotube transistor. Nano Lett. 12, 758–762 (2012).

    Google Scholar 

  3. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Google Scholar 

  4. Ye, P. D. et al. Phosphorene an unexplored 2D semiconductor with a high hole mobility. ACS Nano 8, 4033–4041 (2014).

    Google Scholar 

  5. Tao, L. et al. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10, 227–231 (2015).

    Google Scholar 

  6. Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018).

    Google Scholar 

  7. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Google Scholar 

  8. Das, S., Chen, H. Y., Penumatcha, A. V. & Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 13, 100–105 (2013).

    Google Scholar 

  9. English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    Google Scholar 

  10. Sirringhaus, H. 25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon. Adv. Mater. 26, 1319–1335 (2014).

    Google Scholar 

  11. Waldrip, M., Jurchescu, O. D., Gundlach, D. J. & Bittle, E. G. Contact resistance in organic field-effect transistors: conquering the barrier. Adv. Funct. Mater. 30, 1904576 (2020).

    Google Scholar 

  12. Li, S. et al. Nanometre-thin indium tin oxide for advanced high-performance electronics. Nat. Mater. 18, 1091–1097 (2019).

    Google Scholar 

  13. Li, M. Y., Su, S. K., Wong, H. S. P. & Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 567, 169–170 (2019).

    Google Scholar 

  14. Datye, I. M. et al. Reduction of hysteresis in MoS2 transistors using pulsed voltage measurements. 2D Mater. 6, 011004 (2019).

    Google Scholar 

  15. Streetman, B. G. & Banerjee, S. K. Solid State Electronic Devices 6th edn (Pearson, 2006).

  16. Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. High-field transport and velocity saturation in synthetic monolayer MoS2. Nano Lett. 18, 4516–4522 (2018).

    Google Scholar 

  17. Pinckney, N. et al. Impact of FinFET on near-threshold voltage scalability. IEEE Des. Test 34, 31–38 (2017).

    Google Scholar 

  18. Ortiz-Conde, A. et al. A review of recent MOSFET threshold voltage extraction methods. Microelectron. Reliab. 42, 583–596 (2002).

    Google Scholar 

  19. Ghibaudo, G. New method for the extraction of MOSFET parameters. Electron. Lett. 24, 543–545 (1988).

    Google Scholar 

  20. Chang, H. Y., Zhu, W. & Akinwande, D. On the mobility and contact resistance evaluation for transistors based on MoS2 or two-dimensional semiconducting atomic crystals. Appl. Phys. Lett. 104, 113504 (2014).

    Google Scholar 

  21. Pang, C. et al. Mobility extraction in 2D transition metal dichalcogenide devices—avoiding contact resistance implicated overestimation. Small 17, 2100940 (2021).

    Google Scholar 

  22. Schroder, D. K. Semiconductor Material and Device Characterization 3rd edn (Wiley, 2015).

  23. Mleczko, M. J. et al. HfSe2 and ZrSe2: two-dimensional semiconductors with native high-k oxides. Sci. Adv. 3, e1700481 (2017).

    Google Scholar 

  24. Nasr, J. R., Schulman, D. S., Sebastian, A., Horn, M. W. & Das, S. Mobility deception in nanoscale transistors: an untold contact story. Adv. Mater. 31, 1806020 (2019).

    Google Scholar 

  25. Bittle, E. G., Basham, J. I., Jackson, T. N., Jurchescu, O. D. & Gundlach, D. J. Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 10908 (2016).

    Google Scholar 

  26. Smithe, K. K. H., English, C. D., Suryavanshi, S. V. & Pop, E. Intrinsic electrical transport and performance projections of synthetic monolayer MoS2 devices. 2D Mater. 4, 011009 (2017).

    Google Scholar 

  27. Franklin, A. D. Nanomaterials in transistors: from high-performance to thin-film applications. Science 349, aab2750 (2015).

    Google Scholar 

  28. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    Google Scholar 

  29. Pao, H. C. & Sah, C. T. Effects of diffusion current on characteristics of metal-oxide (insulator)-semiconductor transistors. Solid State Electron. 9, 927–937 (1966).

    Google Scholar 

  30. John, D. L., Castro, L. C. & Pulfrey, D. L. Quantum capacitance in nanoscale device modeling. J. Appl. Phys. 96, 5180 (2004).

    Google Scholar 

  31. Xu, H., Zhang, Z. & Peng, L.-M. Measurements and microscopic model of quantum capacitance in graphene. Appl. Phys. Lett. 98, 133122 (2011).

    Google Scholar 

  32. Appenzeller, J., Zhang, F., Das, S. & Knoch, J. in 2D Materials for Nanoelectronics (eds Houssa, M. et al.) 207–240 (CRC Press, 2016).

  33. Arutchelvan, G. et al. From the metal to the channel: a study of carrier injection through the metal/2D MoS2 interface. Nanoscale 9, 10869–10879 (2017).

    Google Scholar 

  34. Prakash, A., Ilatikhameneh, H., Wu, P. & Appenzeller, J. Understanding contact gating in Schottky barrier transistors from 2D channels. Sci. Rep. 7, 12596 (2017).

    Google Scholar 

  35. Illarionov, Y. Y. et al. Improved hysteresis and reliability of MoS2 transistors with high-quality CVD growth and Al2O3 encapsulation. IEEE Electron Device Lett. 38, 1763–1766 (2017).

    Google Scholar 

  36. IEEE International Roadmap for Devices and Systems (IEEE, 2020); https://irds.ieee.org/

  37. Patel, K. A., Grady, R. W., Smithe, K. K. H., Pop, E. & Sordan, R. Ultra-scaled MoS2 transistors and circuits fabricated without nanolithography. 2D Mater. 7, 015018 (2020).

    Google Scholar 

  38. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    Google Scholar 

  39. Ahmed, Z. et al. Introducing 2D-FETs in device scaling roadmap using DTCO. In Proc. 2020 International Electron Devices Meeting, IEDM 22.5.1–22.5.4 (IEEE, 2020); https://doi.org/10.1109/IEDM13553.2020.9371906

  40. Chou, A. S. et al. High on-state current in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts. IEEE Electron Device Lett. 42, 272–275 (2021).

    Google Scholar 

  41. Sebastian, A., Pendurthi, R., Choudhury, T. H., Redwing, J. M. & Das, S. Benchmarking monolayer MoS2 and WS2 field-effect transistors. Nat. Commun. 12, 693 (2021).

    Google Scholar 

  42. Kumar, A., Tang, A., Philip Wong, H. S. & Saraswat, K. Improved contacts to synthetic monolayer MoS2—a statistical study. In Proc. IEEE International Interconnect Technology Conference 1–3 (IEEE, 2021); https://doi.org/10.1109/IITC51362.2021.9537515

  43. Cheng, Z., Price, K. & Franklin, A. D. Contacting and gating 2-D nanomaterials. IEEE Trans. Electron Devices 65, 4073–4083 (2018).

    Google Scholar 

  44. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    Google Scholar 

  45. Cheng, Z. et al. Are 2D interfaces really flat? ACS Nano 16, 5316–5324 (2022).

    Google Scholar 

  46. Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    Google Scholar 

  47. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Google Scholar 

  48. Uchida, K., Koga, J. & Takagi, S. Experimental study on electron mobility in ultrathin-body silicon-on-insulator metal-oxide-semiconductor field-effect transistors. J. Appl. Phys. 102, 074510 (2007).

    Google Scholar 

  49. Haratipour, N., Namgung, S., Oh, S. H. & Koester, S. J. Fundamental limits on the subthreshold slope in Schottky source/drain black phosphorus field-effect transistors. ACS Nano 10, 3791–3800 (2016).

    Google Scholar 

  50. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    Google Scholar 

  51. Nikonov, D. E. & Young, I. A. Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid State Comput. Devices Circuits 1, 3–11 (2015).

    Google Scholar 

  52. Abuzaid, H., Williams, N. X. & Franklin, A. D. How good are 2D transistors? An application-specific benchmarking study. Appl. Phys. Lett. 118, 030501 (2021).

    Google Scholar 

  53. Lemme, M. C., Akinwande, D., Huyghebaert, C. & Stampfer, C. 2D materials for future heterogeneous electronics. Nat. Commun. 13, 1392 (2022).

    Google Scholar 

  54. McClellan, C. J., Yalon, E., Smithe, K. K. H., Suryavanshi, S. V. & Pop, E. High current density in monolayer MoS2 doped by AlOx. ACS Nano 15, 1587–1596 (2021).

    Google Scholar 

  55. Lembke, D. & Kis, A. Breakdown of high-performance monolayer MoS2 transistors. ACS Nano 6, 10070–10075 (2012).

    Google Scholar 

  56. Kumar, A. et al. Sub-200 Ω µm alloyed contacts to synthetic monolayer MoS2. In Proc. IEEE International Electron Devices Meeting (IEDM) 154–157 (IEEE, 2021).

  57. Chou, A. et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. In Proc. IEEE International Electron Devices Meeting (IEDM) 150–153 (IEEE, 2021).

  58. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    Google Scholar 

Download references

Acknowledgements

We acknowledge H. Zhang and A. Davydov from the National Institute of Standards and Technology for their help with the TEM images of the oxide in Fig. 2. We acknowledge G. Li and L. Cao from North Carolina State University for providing the chemical-vapour-deposited MoS2 film. This work is supported by NEWLIMITS, a centre in nCORE, a Semiconductor Research Corporation (SRC) programme sponsored by NIST through award no. 70NANB17H041. A.D.F. acknowledges support from the National Science Foundation under grant no. ECCS 1915814. M.C.L. acknowledges funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements nos. 881603 (Graphene Flagship), 952792 (2D-EPL) and 829035 (QUEFORMAL), as well as the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through grants nos. LE 2440/7-1 and LE 2440/8-1. Furthermore, support by the Bundesministerium für Bildung und Forschung (BMBF, German Ministry of Education and Research) through grants nos. 03XP0210 (GIMMIK) and 03ZU1106 (NeuroSys) is acknowledged. L.-M.P. acknowledges the National Science Foundation of China under grant no. 61888102. S.J.K. acknowledges support from the NSF through award no. DMR-1921629. Fabrication and measurements were partially performed at the NIST Center for Nanoscale Science and Technology and at Duke Shared Manufacturing and Instrument Facility (SMIF). Certain commercial equipment, instruments, or materials are identified in this paper to specify the experimental procedure adequately. Such identifications are not intended to imply recommendation or endorsement by the National Institute of Standards and Technology (NIST), nor is it intended to imply that the materials or equipment identified are necessarily the best available for the purpose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the preparation of the manuscript.

Corresponding authors

Correspondence to Zhihui Cheng, Aaron D. Franklin or Curt A. Richter.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Han Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Note 1: Rigorously reporting and benchmarking Imax/Imin. Supplementary Note 2: Different methods to extract threshold voltage VT and its uncertainties. Supplementary Note 3: Extracting Rc from TLM. Supplementary Note 4: Additional parameters. Supplementary Note 5: Demonstration of device spread and parameter variations. Supplementary Note 6: Benchmarking devices with different channel thicknesses.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Pang, CS., Wang, P. et al. How to report and benchmark emerging field-effect transistors. Nat Electron 5, 416–423 (2022). https://doi.org/10.1038/s41928-022-00798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00798-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing