Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Phase engineering of Cr5Te8 with colossal anomalous Hall effect

Abstract

Two-dimensional materials that are intrinsically ferromagnetic are crucial for the development of compact spintronic devices. However, most non-layered 2D magnets with a strong ferromagnetic order are difficult to synthesize. Here we show that the flakes of trigonal and monoclinic Cr5Te8 can be grown via a chemical vapour deposition method. Using magneto-optical and magnetotransport measurements, we show that both phases exhibit robust ferromagnetism with strong perpendicular anisotropy at thicknesses of a few nanometres. A high Curie temperature of up to 200 K can be obtained by manipulating the phase structure and thickness. We also observe a colossal anomalous Hall effect in the more structurally distorted monoclinic Cr5Te8, with an anomalous Hall conductivity of 650 Ω−1 cm−1 and anomalous Hall angle of 5%.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Synthesis and characterizations of 2D tr-Cr5Te8 and m-Cr5Te8.
Fig. 2: Atomic morphology of tr-Cr5Te8 and m-Cr5Te8 crystals.
Fig. 3: Magnetotransport measurement of 2D Cr5Te8.
Fig. 4: AHE of 2D Cr5Te8 and other metallic ferromagnets.
Fig. 5: Atomic structures and magnetism of Cr5Te8.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code for calculating the Stoner parameter and spin ordering is available from the corresponding authors upon reasonable request.

References

  1. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  Google Scholar 

  2. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  Google Scholar 

  3. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    Article  Google Scholar 

  4. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  Google Scholar 

  5. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  Google Scholar 

  6. Gibertini, M., Koperski, M., Morpurgo, A. & Novoselov, K. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    Article  Google Scholar 

  7. Zhang, Y. et al. Ultrathin magnetic 2D single‐crystal CrSe. Adv. Mater. 31, 1900056 (2019).

    Article  Google Scholar 

  8. Zhou, S. et al. Ultrathin non‐van der Waals magnetic rhombohedral Cr2S3: space‐confined chemical vapor deposition synthesis and Raman scattering investigation. Adv. Funct. Mater. 29, 1805880 (2019).

    Article  Google Scholar 

  9. Cui, F. et al. Controlled growth and thickness‐dependent conduction‐type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 32, 1905896 (2020).

    Article  Google Scholar 

  10. Chu, J. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 19, 2154–2161 (2019).

    Article  Google Scholar 

  11. Li, B. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 20, 818–825 (2021).

    Article  Google Scholar 

  12. Dijkstra, J., Van Bruggen, C., Haas, C. & de Groot, R. Electronic band-structure calculations of some magnetic chromium compounds. J. Phys. Condens. Matter 1, 9163 (1989).

    Article  Google Scholar 

  13. Dijkstra, J., Weitering, H., Van Bruggen, C., Haas, C. & De Groot, R. Band-structure calculations, and magnetic and transport properties of ferromagnetic chromium tellurides (CrTe, Cr3Te4, Cr2Te3). J. Phys. Condens. Matter 1, 9141 (1989).

    Article  Google Scholar 

  14. Wen, Y. et al. Tunable room-temperature ferromagnetism in two-dimensional Cr2Te3. Nano Lett. 20, 3130–3139 (2020).

    Article  Google Scholar 

  15. Coughlin, A. L. et al. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano 14, 15256–15266 (2020).

    Article  Google Scholar 

  16. Meng, L. et al. Anomalous thickness dependence of Curie temperature in air-stable two-dimensional ferromagnetic 1T-CrTe2 grown by chemical vapor deposition. Nat. Commun. 12, 809 (2021).

    Article  Google Scholar 

  17. Wang, Y. et al. Magnetic anisotropy and topological Hall effect in the trigonal chromium tellurides Cr5Te8. Phys. Rev. B 100, 024434 (2019).

    Article  Google Scholar 

  18. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539 (2010).

    Article  Google Scholar 

  19. Liu, Y. & Petrovic, C. Anomalous Hall effect in the trigonal Cr5Te8 single crystal. Phys. Rev. B 98, 195122 (2018).

    Article  Google Scholar 

  20. Zhang, X., Yu, T., Xue, Q., Lei, M. & Jiao, R. Critical behavior and magnetocaloric effect in monoclinic Cr5Te8. J. Alloys Compd. 750, 798–803 (2018).

    Article  Google Scholar 

  21. Bensch, W., Helmer, O. & Näther, C. Determination and redetermination of the crystal structures of chromium tellurides in the composition range CrTe1.56–CrTe1.67: trigonal di-chromium tri-telluride Cr2Te3, monoclinic penta-chromium octa-telluride Cr5Te8, and the five layer superstructure of trigonal penta-chromium octa-telluride Cr5Te8. Mater. Res. Bull. 32, 305–318 (1997).

    Article  Google Scholar 

  22. Lukoschus, K., Kraschinski, S., Näther, C., Bensch, W. & Kremer, R. Magnetic properties and low temperature X-ray studies of the weak ferromagnetic monoclinic and trigonal chromium tellurides Cr5Te8. J. Solid State Chem. 177, 951–959 (2004).

    Article  Google Scholar 

  23. Wang, X. et al. Ultrathin FeTe nanosheets with tetragonal and hexagonal phases synthesized by chemical vapor deposition. Mater. Today 45, 35–43 (2021).

    Article  Google Scholar 

  24. Ipser, H., Komarek, K. L. & Klepp, K. O. Transition metal–chalcogen systems VIII: the Cr–Te phase diagram. J. Less-Common Met. 92, 265–282 (1983).

    Article  Google Scholar 

  25. Tang, B. et al. Phase‐controlled synthesis of monolayer ternary telluride with a random local displacement of tellurium atoms. Adv. Mater. 31, 1900862 (2019).

    Article  Google Scholar 

  26. Biesinger, M. C. et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 257, 2717–2730 (2011).

    Article  Google Scholar 

  27. Lasek, K. et al. Molecular beam epitaxy of transition metal (Ti-, V-, and Cr-) tellurides: from monolayer ditellurides to multilayer self-intercalation compounds. ACS Nano 14, 8473–8484 (2020).

    Article  Google Scholar 

  28. Krivanek, O. L. et al. Atom-by-atom structural and chemical analysis by annular dark-field electron microscopy. Nature 464, 571–574 (2010).

    Article  Google Scholar 

  29. Wang, M. et al. Two-dimensional ferromagnetism in CrTe flakes down to atomically thin layers. Nanoscale 12, 16427–16432 (2020).

    Article  Google Scholar 

  30. Zhang, X. et al. Room-temperature intrinsic ferromagnetism in epitaxial CrTe2 ultrathin films. Nat. Commun. 12, 2492 (2021).

    Article  Google Scholar 

  31. Coughlin, A. L. et al. Near degeneracy of magnetic phases in two-dimensional chromium telluride with enhanced perpendicular magnetic anisotropy. ACS Nano 14, 15256–15266 (2020).

    Article  Google Scholar 

  32. Asamitsu, A. et al. Anomalous Hall effect and Nernst effect in itinerant ferromagnets. J. Magn. Magn. Mater. 310, 2000–2002 (2007).

    Article  Google Scholar 

  33. Liu, E. et al. Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018).

    Article  Google Scholar 

  34. Yang, S.-Y. et al. Giant, unconventional anomalous Hall effect in the metallic frustrated magnet candidate, KV3Sb5. Sci. Adv. 6, eabb6003 (2020).

    Article  Google Scholar 

  35. Kim, K. et al. Large anomalous Hall current induced by topological nodal lines in a ferromagnetic van der Waals semimetal. Nat. Mater. 17, 794–799 (2018).

    Article  Google Scholar 

  36. Miyasato, T. et al. Crossover behavior of the anomalous Hall effect and anomalous Nernst effect in itinerant ferromagnets. Phys. Rev. Lett. 99, 086602 (2007).

    Article  Google Scholar 

  37. Fujishiro, Y. et al. Giant anomalous Hall effect from spin-chirality scattering in a chiral magnet. Nat. Commun. 12, 317 (2021).

    Article  Google Scholar 

  38. Tian, Y., Ye, L. & Jin, X. Proper scaling of the anomalous Hall effect. Phys. Rev. Lett. 103, 087206 (2009).

    Article  Google Scholar 

  39. Jiang, Z. et al. Magnetic anisotropy and anomalous Hall effect in monoclinic single crystal Cr5Te8. Phys. Rev. B 102, 144433 (2020).

    Article  Google Scholar 

  40. Ye, L., Tian, Y., Jin, X. & Xiao, D. Temperature dependence of the intrinsic anomalous Hall effect in nickel. Phys. Rev. B 85, 220403 (2012).

    Article  Google Scholar 

  41. Huang, M. et al. Colossal anomalous Hall effect in ferromagnetic van der Waals CrTe2. ACS Nano 15, 9759–9763 (2021).

  42. Huang, Z.-L., Kockelmann, W., Telling, M. & Bensch, W. A neutron diffraction study of structural and magnetic properties of monoclinic Cr5Te8. Solid State Sci. 10, 1099–1105 (2008).

    Article  Google Scholar 

  43. Kang, L. et al. Phase-controllable growth of ultrathin 2D magnetic FeTe crystals. Nat. Commun. 11, 3729 (2020).

    Article  Google Scholar 

  44. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  Google Scholar 

  46. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  47. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  48. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  49. Cococcioni, M. & De Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA + U method. Phys. Rev. B 71, 035105 (2005).

    Article  Google Scholar 

  50. Dudarev, S., Botton, G., Savrasov, S., Humphreys, C. & Sutton, A. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    Article  Google Scholar 

Download references

Acknowledgements

Z.L. acknowledges support from the National Research Foundation Singapore (NRF-CRP22-2019-0007 and NRF-CRP21-2018-0007). This research is also supported by the Ministry of Education, Singapore, under its AcRF Tier 3 Programme ‘Geometrical Quantum Materials’ (MOE2018-T3-1-002), and AcRF Tier 1 RG161/19. W.G. acknowledges support from the National Research Foundation Singapore (NRF-CRP22-2019-0004). J.L. acknowledges support from the National Natural Science Foundation of China (grant no. 11974156); Guangdong International Science Collaboration Project (grant no. 2019A050510001); Guangdong Innovative and Entrepreneurial Research Team Program (grant no. 2019ZT08C044); Shenzhen Science and Technology Program (no. KQTD20190929173815000 and 20200925161102001); the Science, Technology and Innovation Commission of Shenzhen Municipality (no. ZDSYS20190902092905285); and assistance of SUSTech Core Research Facilities, especially technical support from the Pico-Centre that receives support from the Presidential fund and Development and Reform Commission of Shenzhen Municipality. J.Z. acknowledges support from the Beijing Institute of Technology (grant no. 2021CX11013) and National Natural Science Foundation of China (grant no. 62174013). The authors are grateful for the technical support from Nano-X of Suzhou Institute of Nano-Bionics, Chinese Academy of Science (SINANO).

Author information

Authors and Affiliations

Authors

Contributions

B.T., X.W., M.H. and X.X. contributed equally to this work. Z.L., J.L. and J.Z. conceived and supervised the project. B.T. synthesized the sample and conducted the AFM, XPS, SEM-EDS and Raman characterizations. X.W. fabricated the devices and carried out the transport measurements and AHE data analysis. M.H., C.Z. and J.L. performed the STEM measurement and data analysis. Z.Z. and W.G. conducted the RMCD measurements and data analysis. X.C. assisted with the focused ion beam lithography. X.X., J.Y. and X.L. performed the first-principles calculations. B.T., M.H., Z.Z. and X.X. co-wrote the manuscript. X.W., Y.Y., Q.F., J.Z., J.L. and Z.L. discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xingji Li, Jiadong Zhou, Junhao Lin or Zheng Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–24 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tang, B., Wang, X., Han, M. et al. Phase engineering of Cr5Te8 with colossal anomalous Hall effect. Nat Electron 5, 224–232 (2022). https://doi.org/10.1038/s41928-022-00754-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00754-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing