Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Smart textiles for personalized healthcare

Abstract

Incorporating sensing and therapeutic capabilities into everyday textiles could be a powerful approach in the development of personalized healthcare. The creation of such smart textiles has been driven by the fabrication of various miniaturized platform technologies, and has led to the construction of compact, autonomous and interconnected functional textiles. Here we review the development of smart textiles for application in personalized healthcare. We examine the different platform technologies, the various fabrication strategies and the range of clinical scenarios in which they are used. We also explore the current commercial and regulatory landscapes, and consider issues of data management. Finally, we highlight the key steps required to transition these technological platforms to commercial applications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Timeline of platform technology development for smart healthcare textiles.
Fig. 2: Fabrication strategies of smart healthcare textiles.
Fig. 3: Smart diagnostic textiles.
Fig. 4: Smart therapeutic textiles.
Fig. 5: ATBAN for personalized healthcare.
Fig. 6: Future trends in smart healthcare textiles.

References

  1. Wang, C., Horby, P. W., Hayden, F. G. & Gao, G. F. A novel coronavirus outbreak of global health concern. Lancet 395, 470–473 (2020).

    Google Scholar 

  2. Schwalbe, N. & Wahl, B. Artificial intelligence and the future of global health. Lancet 395, 1579–1586 (2020).

    Google Scholar 

  3. Howitt, P. et al. Technologies for global health. Lancet 380, 507–535 (2012).

    Google Scholar 

  4. Kerr, E. A. & Hayward, R. A. Patient-centered performance management: enhancing value for patients and health care systems. JAMA 310, 137–138 (2013).

    Google Scholar 

  5. Bierman, A. S. & Tinetti, M. E. Precision medicine to precision care: managing multimorbidity. Lancet 388, 2721–2723 (2016).

    Google Scholar 

  6. Gray, J. A. M. The shift to personalised and population medicine. Lancet 382, 200–201 (2013).

    Google Scholar 

  7. Rose, N. Personalized medicine: promises, problems and perils of a new paradigm for healthcare. Procedia Soc. Behav. Sci. 77, 341–352 (2013).

    Google Scholar 

  8. Sultan, N. Reflective thoughts on the potential and challenges of wearable technology for healthcare provision and medical education. Int. J. Inf. Manag. Sci. 35, 521–526 (2015).

    Google Scholar 

  9. Ye, S., Feng, S., Huang, L. & Bian, S. Recent progress in wearable biosensors: From healthcare monitoring to sports analytics. Biosensors 10, 205 (2020).

    Google Scholar 

  10. Rai, P. et al. Smart Healthcare Textile Sensor System for Unhindered Pervasive Health monitoring (SPIE, 2012).

  11. Wang, S., Bai, Y. & Zhang, T. Wearable Bioelectronics (Elsevier, 2020).

  12. Ray, T. R. et al. Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019).

    Google Scholar 

  13. Kim, J., Campbell, A. S., de Ávila, B. E.-F. & Wang, J. Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019).

    Google Scholar 

  14. Araromi, O. A. et al. Ultra-sensitive and resilient compliant strain gauges for soft machines. Nature 587, 219–224 (2020).

    Google Scholar 

  15. Chen, G., Fang, Y., Zhao, X., Tat, T. & Chen, J. Textiles for learning tactile interactions. Nat. Electron. 4, 175–176 (2021).

    Google Scholar 

  16. Standard Terminology for Smart Textiles ASTM D8248-20 (ASTM, 2020).

  17. Yu, L. et al. A tightly-bonded and flexible mesoporous zeolite-cotton hybrid hemostat. Nat. Commun. 10, 1932 (2019).

    Google Scholar 

  18. Si, Y. et al. Daylight-driven rechargeable antibacterial and antiviral nanofibrous membranes for bioprotective applications. Sci. Adv. 4, eaar5931 (2018).

    Google Scholar 

  19. Lee, D. T., Jamir, J. D., Peterson, G. W. & Parsons, G. N. Protective fabrics: metal-organic framework textiles for rapid photocatalytic sulfur mustard simulant detoxification. Matter 2, 404–415 (2020).

    Google Scholar 

  20. Meng, K. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2, 896–907 (2020).

    Google Scholar 

  21. Wang, L. et al. Functionalized helical fibre bundles of carbon nanotubes as electrochemical sensors for long-term in vivo monitoring of multiple disease biomarkers. Nat. Biomed. Eng. 4, 159–171 (2020).

    Google Scholar 

  22. Mostafalu, P. et al. A textile dressing for temporal and dosage controlled drug delivery. Adv. Funct. Mater. 27, 1702399 (2017).

    Google Scholar 

  23. Collins, F. S. & Varmus, H. A new initiative on precision medicine. N. Engl. J. Med. 372, 793–795 (2015).

    Google Scholar 

  24. Shilo, S., Rossman, H. & Segal, E. Axes of a revolution: challenges and promises of big data in healthcare. Nat. Med. 26, 29–38 (2020).

    Google Scholar 

  25. Karim, N. et al. Scalable production of graphene-based wearable e-textiles. ACS Nano 11, 12266–12275 (2017).

    Google Scholar 

  26. Ilderem, V. The technology underpinning 5G. Nat. Electron. 3, 5–6 (2020).

    Google Scholar 

  27. Wang, Q.-W. et al. Multifunctional and water-resistant mxene-decorated polyester textiles with outstanding electromagnetic interference shielding and joule heating performances. Adv. Funct. Mater. 29, 1806819 (2019).

    Google Scholar 

  28. Chen, G. et al. Discovering giant magnetoelasticity in soft matter for electronic textiles. Matter 4, 3725–3740 (2021).

    Google Scholar 

  29. Fang, Y., Chen, G., Bick, M. & Chen, J. Smart textiles for personalized thermoregulation. Chem. Soc. Rev. 50, 9357–9374 (2021).

    Google Scholar 

  30. Chen, G., Li, Y., Bick, M. & Chen, J. Smart textiles for electricity generation. Chem. Rev. 120, 3668–3720 (2020).

    Google Scholar 

  31. Alberghini, M. et al. Sustainable polyethylene fabrics with engineered moisture transport for passive cooling. Nat. Sustain. 4, 715–724 (2021).

    Google Scholar 

  32. Sundaram, S. et al. Learning the signatures of the human grasp using a scalable tactile glove. Nature 569, 698–702 (2019).

    Google Scholar 

  33. Post, E. R., Orth, M., Russo, P. R. & Gershenfeld, N. E-broidery: design and fabrication of textile-based computing. IBM Syst. J. 39, 840–860 (2000).

    Google Scholar 

  34. Carpi, F. & Rossi, D. D. Electroactive polymer-based devices for e-textiles in biomedicine. IEEE Trans. Inf. Technol. Biomed. 9, 295–318 (2005).

    Google Scholar 

  35. Catrysse, M. et al. Towards the integration of textile sensors in a wireless monitoring suit. Sens. Actuators, A 114, 302–311 (2004).

    Google Scholar 

  36. Spigulis, J. & Pfafrods, D. Clinical Potential of the Side-Glowing Optical Fibers (SPIE, 1997).

  37. Ishijima, M. Monitoring of electrocardiograms in bed without utilizing body surface electrodes. IEEE Trans. Biomed. Eng. 40, 593–594 (1993).

    Google Scholar 

  38. Ishijima, M. Cardiopulmonary monitoring by textile electrodes without subject-awareness of being monitored. Med. Biol. Eng. Comput. 35, 685–690 (1997).

    Google Scholar 

  39. Lind, E. J. et al. A sensate liner for personnel monitoring applications. in First International Symposium on Wearable Computers 98–105 (IEEE, 1997).

  40. Rossi, D. D., Santa, A. D. & Mazzoldi, A. Dressware: wearable piezo- and thermoresistive fabrics for ergonomics and rehabilitation. in Proceedings of the 19th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. ‘Magnificent Milestones and Emerging Opportunities in Medical Engineering’ 1880–1883 (IEEE, 1997).

  41. Baps, B., Eber-Koyuncu, M. & Koyuncu, M. Ceramic based solar cells in fiber form. Key Eng. Mater. 206–213, 937–940 (2002).

    Google Scholar 

  42. Yamamoto, N. & Takai, H. Electrical power generation from a knitted wire panel using the thermoelectric effect. Electr. Eng. Jpn. 140, 16–21 (2002).

    Google Scholar 

  43. Duffy, M. & Carroll, D. Electromagnetic generators for power harvesting. in 2004 IEEE 35th Annual Power Electronics Specialists Conference 2075–2081 (IEEE, 2004).

  44. Lee, J. B. & Subramanian, V. Organic transistors on fiber: a first step towards electronic textiles. in IEEE International Electron Devices Meeting 2003 8.3.1–8.3.4 (IEEE, 2004).

  45. Zhang, H. et al. Triboelectric nanogenerator built inside clothes for self-powered glucose biosensors. Nano Energy 2, 1019–1024 (2013).

    Google Scholar 

  46. Grillet, A. et al. Optical fiber sensors embedded into medical textiles for healthcare monitoring. IEEE Sens. J. 8, 1215–1222 (2008).

    Google Scholar 

  47. Lyu, S., He, Y., Yao, Y., Zhang, M. & Wang, Y. Photothermal clothing for thermally preserving pipeline transportation of crude oil. Adv. Funct. Mater. 29, 1900703 (2019).

    Google Scholar 

  48. Mordon, S. et al. The conventional protocol vs. a protocol including illumination with a fabric-based biophotonic device (the phosistos protocol) in photodynamic therapy for actinic keratosis: a randomized, controlled, noninferiority clinical study. Br. J. Dermatol. 182, 76–84 (2020).

    Google Scholar 

  49. Shen, J., Chui, C. & Tao, X. Luminous fabric devices for wearable low-level light therapy. Biomed. Opt. Express 4, 2925–2937 (2013).

    Google Scholar 

  50. Park, S. et al. One-step optogenetics with multifunctional flexible polymer fibers. Nat. Neurosci. 20, 612–619 (2017).

    Google Scholar 

  51. Zhang, Z. et al. A colour-tunable, weavable fibre-shaped polymer light-emitting electrochemical cell. Nat. Photon. 9, 233–238 (2015).

    Google Scholar 

  52. Liu, M. et al. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 29, 1703700 (2017).

    Google Scholar 

  53. Cho, S.-Y. et al. Continuous meter-scale synthesis of weavable tunicate cellulose/carbon nanotube fibers for high-performance wearable sensors. ACS Nano 13, 9332–9341 (2019).

    Google Scholar 

  54. Wu, R. et al. Silk composite electronic textile sensor for high space precision 2D combo temperature–pressure sensing. Small 15, 1901558 (2019).

    Google Scholar 

  55. Ding, T. et al. Scalable thermoelectric fibers for multifunctional textile-electronics. Nat. Commun. 11, 6006 (2020).

    Google Scholar 

  56. Sun, T. et al. Stretchable fabric generates electric power from woven thermoelectric fibers. Nat. Commun. 11, 572 (2020).

    Google Scholar 

  57. Jeong, E. G., Jeon, Y., Cho, S. H. & Choi, K. C. Textile-based washable polymer solar cells for optoelectronic modules: Toward self-powered smart clothing. Energy Environ. Sci. 12, 1878–1889 (2019).

    Google Scholar 

  58. Zhang, N. et al. A wearable all-solid photovoltaic textile. Adv. Mater. 28, 263–269 (2016).

    Google Scholar 

  59. Matsuhisa, N. et al. Printable elastic conductors with a high conductivity for electronic textile applications. Nat. Commun. 6, 7461 (2015).

    Google Scholar 

  60. Jin, H. et al. Enhancing the performance of stretchable conductors for e-textiles by controlled ink permeation. Adv. Mater. 29, 1605848 (2017).

    Google Scholar 

  61. Lee, J. et al. Conductive fiber-based ultrasensitive textile pressure sensor for wearable electronics. Adv. Mater. 27, 2433–2439 (2015).

    Google Scholar 

  62. Li, R. et al. Supercapacitive iontronic nanofabric sensing. Adv. Mater. 29, 1700253 (2017).

    Google Scholar 

  63. Dalton, A. B. et al. Super-tough carbon-nanotube fibres. Nature 423, 703–703 (2003).

    Google Scholar 

  64. Etches, J., Bond, I. & Mellor, P. The Manufacturing of Magnetically-Active Fiber-Reinforced Composites for Use in Power Generation (SPIE, 2004).

  65. Lee, H. & Roh, J.-S. Wearable electromagnetic energy-harvesting textiles based on human walking. Text. Res. J. 89, 2532–2541 (2019).

    Google Scholar 

  66. Li, H. et al. Chemical and biomolecule sensing with organic field-effect transistors. Chem. Rev. 119, 3–35 (2019).

    Google Scholar 

  67. Kim, S. J. et al. A new architecture for fibrous organic transistors based on a double-stranded assembly of electrode microfibers for electronic textile applications. Adv. Mater. 31, 1900564 (2019).

    Google Scholar 

  68. Shi, W., Guo, Y. & Liu, Y. When flexible organic field-effect transistors meet biomimetics: a prospective view of the Internet of Things. Adv. Mater. 32, 1901493 (2020).

    Google Scholar 

  69. Yang, A. et al. Fabric organic electrochemical transistors for biosensors. Adv. Mater. 30, 1800051 (2018).

    Google Scholar 

  70. Hamedi, M., Forchheimer, R. & Inganäs, O. Towards woven logic from organic electronic fibres. Nat. Mater. 6, 357–362 (2007).

    Google Scholar 

  71. Egusa, S. et al. Multimaterial piezoelectric fibres. Nat. Mater. 9, 643–648 (2010).

    Google Scholar 

  72. Qin, Y., Wang, X. & Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008).

    Google Scholar 

  73. Su, Y. et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 31, 2010962 (2021).

    Google Scholar 

  74. Azimi, B. et al. Electrospinning piezoelectric fibers for biocompatible devices. Adv. Healthc. Mater. 9, 1901287 (2020).

    Google Scholar 

  75. Soin, N. et al. Novel ‘3-D spacer’ all fibre piezoelectric textiles for energy harvesting applications. Energy Environ. Sci. 7, 1670–1679 (2014).

    Google Scholar 

  76. Kwon, C. H. et al. High-power biofuel cell textiles from woven biscrolled carbon nanotube yarns. Nat. Commun. 5, 3928 (2014).

    Google Scholar 

  77. Lv, J. et al. Sweat-based wearable energy harvesting-storage hybrid textile devices. Energy Environ. Sci. 11, 3431–3442 (2018).

    Google Scholar 

  78. Fan, F.-R., Tian, Z.-Q. & Wang, Z. L. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012).

    Google Scholar 

  79. Chen, J. & Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1, 480–521 (2017).

    Google Scholar 

  80. Zhou, Y., Deng, W., Xu, J. & Chen, J. Engineering materials at the nanoscale for triboelectric nanogenerators. Cell. Rep. Phys. Sci. 1, 100142 (2020).

    Google Scholar 

  81. Chen, G., Au, C. & Chen, J. Textile triboelectric nanogenerators for wearable pulse wave monitoring. Trends Biotechnol. 39, 1078–1092 (2021).

    Google Scholar 

  82. Zhou, Z. et al. Single-layered ultra-soft washable smart textiles for all-around ballistocardiograph, respiration, and posture monitoring during sleep. Biosens. Bioelectron. 155, 112064 (2020).

    Google Scholar 

  83. He, T. et al. Self-sustainable wearable textile nano-energy nano-system (NENS) for next-generation healthcare applications. Adv. Sci. 6, 1901437 (2019).

    Google Scholar 

  84. Jung, S., Lee, J., Hyeon, T., Lee, M. & Kim, D.-H. Fabric-based integrated energy devices for wearable activity monitors. Adv. Mater. 26, 6329–6334 (2014).

    Google Scholar 

  85. Chen, C. et al. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 32, 84–93 (2020).

    Google Scholar 

  86. Zhong, J. et al. Fiber-based generator for wearable electronics and mobile medication. ACS Nano 8, 6273–6280 (2014).

    Google Scholar 

  87. Zhou, Y. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. 20, 1670–1676 (2021).

    Google Scholar 

  88. Wu, Y., Mechael, S. S., Lerma, C., Carmichael, R. S. & Carmichael, T. B. Stretchable ultrasheer fabrics as semitransparent electrodes for wearable light-emitting e-textiles with changeable display patterns. Matter 2, 882–895 (2020).

    Google Scholar 

  89. Ryan, J. D., Mengistie, D. A., Gabrielsson, R., Lund, A. & Müller, C. Machine-washable PEDOT:PSS dyed silk yarns for electronic textiles. ACS Appl. Mater. Interfaces 9, 9045–9050 (2017).

    Google Scholar 

  90. Aboutalebi, S. H. et al. High-performance multifunctional graphene yarns: toward wearable all-carbon energy storage textiles. ACS Nano 8, 2456–2466 (2014).

    Google Scholar 

  91. Lund, A. et al. Conducting materials as building blocks for electronic textiles. MRS Bull. 46, 491–501 (2021).

    Google Scholar 

  92. Ghosh, S. K. & Mandal, D. Synergistically enhanced piezoelectric output in highly aligned 1D polymer nanofibers integrated all-fiber nanogenerator for wearable nano-tactile sensor. Nano Energy 53, 245–257 (2018).

    Google Scholar 

  93. Zheng, Y. et al. Carbon nanotube yarn based thermoelectric textiles for harvesting thermal energy and powering electronics. J. Mater. Chem. A 8, 2984–2994 (2020).

    Google Scholar 

  94. Nazari, M. et al. Metal–organic-framework-coated optical fibers as light-triggered drug delivery vehicles. Adv. Funct. Mater. 26, 3244–3249 (2016).

    Google Scholar 

  95. Yan, J. et al. Transformation of oxide ceramic textiles from insulation to conduction at room temperature. Sci. Adv. 6, eaay8538 (2020).

    Google Scholar 

  96. Park, M. et al. Highly stretchable electric circuits from a composite material of silver nanoparticles and elastomeric fibres. Nat. Nanotechnol. 7, 803–809 (2012).

    Google Scholar 

  97. Chatterjee, K. & Ghosh, T. K. 3D printing of textiles: potential roadmap to printing with fibers. Adv. Mater. 32, 1902086 (2020).

    Google Scholar 

  98. Loke, G. et al. Digital electronics in fibres enable fabric-based machine-learning inference. Nat. Commun. 12, 3317 (2021).

    Google Scholar 

  99. Duan, X. et al. Large-scale spinning approach to engineering knittable hydrogel fiber for soft robots. ACS Nano 14, 14929–14938 (2020).

    Google Scholar 

  100. Huang, Y. et al. Large-scale spinning of silver nanofibers as flexible and reliable conductors. Nano Lett. 16, 5846–5851 (2016).

    Google Scholar 

  101. Tang, Z. et al. Highly stretchable core–sheath fibers via wet-spinning for wearable strain sensors. ACS Appl. Mater. Interfaces 10, 6624–6635 (2018).

    Google Scholar 

  102. Zhao, Y. et al. A moss-inspired electroless gold-coating strategy toward stretchable fiber conductors by dry spinning. Adv. Electron. Mater. 5, 1800462 (2019).

    Google Scholar 

  103. Wang, Q. et al. Melt spinning of low-cost activated carbon fiber with a tunable pore structure for high-performance flexible supercapacitors. ACS Appl. Energy Mater. 3, 9360–9368 (2020).

    Google Scholar 

  104. Nayeem, M. O. G. et al. All-nanofiber–based, ultrasensitive, gas-permeable mechanoacoustic sensors for continuous long-term heart monitoring. Proc. Natl Acad. Sci. USA 117, 7063–7070 (2020).

    Google Scholar 

  105. Allison, L., Hoxie, S. & Andrew, T. L. Towards seamlessly-integrated textile electronics: methods to coat fabrics and fibers with conducting polymers for electronic applications. Chem. Commun. 53, 7182–7193 (2017).

    Google Scholar 

  106. Samanta, A. & Bordes, R. Conductive textiles prepared by spray coating of water-based graphene dispersions. RSC Adv. 10, 2396–2403 (2020).

    Google Scholar 

  107. Zheng, C. et al. Superhydrophobic and flame-retardant alginate fabrics prepared through a one-step dip-coating surface-treatment. Cellulose 28, 5973–5984 (2021).

    Google Scholar 

  108. Park, Y., Park, M.-J. & Lee, J.-S. Reduced graphene oxide-based artificial synapse yarns for wearable textile device applications. Adv. Funct. Mater. 28, 1804123 (2018).

    Google Scholar 

  109. Zhang, M. et al. Printable smart pattern for multifunctional energy-management e-textile. Matter 1, 168–179 (2019).

    Google Scholar 

  110. Cao, R. et al. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 12, 5190–5196 (2018).

    Google Scholar 

  111. Shahariar, H., Kim, I., Soewardiman, H. & Jur, J. S. Inkjet printing of reactive silver ink on textiles. ACS Appl. Mater. Interfaces 11, 6208–6216 (2019).

    Google Scholar 

  112. Yan, W. et al. Thermally drawn advanced functional fibers: new frontier of flexible electronics. Mater. Today 35, 168–194 (2020).

    Google Scholar 

  113. Loke, G., Yan, W., Khudiyev, T., Noel, G. & Fink, Y. Recent progress and perspectives of thermally drawn multimaterial fiber electronics. Adv. Mater. 32, 1904911 (2020).

    Google Scholar 

  114. Wang, Z. et al. Designer patterned functional fibers via direct imprinting in thermal drawing. Nat. Commun. 11, 3842 (2020).

    Google Scholar 

  115. Frutiger, A. et al. Capacitive soft strain sensors via multicore–shell fiber printing. Adv. Mater. 27, 2440–2446 (2015).

    Google Scholar 

  116. Wang, Y. et al. 3D-printed all-fiber Li-ion battery toward wearable energy storage. Adv. Funct. Mater. 27, 1703140 (2017).

    Google Scholar 

  117. Zhang, X. et al. Recent advances in functional fiber electronics. SusMat 1, 105–126 (2021).

    Google Scholar 

  118. Yu, X. et al. A coaxial triboelectric nanogenerator fiber for energy harvesting and sensing under deformation. J. Mater. Chem. A 5, 6032–6037 (2017).

    Google Scholar 

  119. Li, R., Xiang, X., Tong, X., Zou, J. & Li, Q. Wearable double-twisted fibrous perovskite solar cell. Adv. Mater. 27, 3831–3835 (2015).

    Google Scholar 

  120. Xu, X., Xie, S., Zhang, Y. & Peng, H. The rise of fiber electronics. Angew. Chem. Int. Ed. 58, 13643–13653 (2019).

    Google Scholar 

  121. Park, J. W., Kwon, S., Kwon, J. H., Kim, C. Y. & Choi, K. C. Low-leakage fiber-based field-effect transistors with an Al2O3–MgO nanolaminate as gate insulator. ACS Appl. Electron. Mater. 1, 1400–1407 (2019).

    Google Scholar 

  122. Zhang, M. C. et al. Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 27, 1604795 (2017).

    Google Scholar 

  123. Zhu, M. et al. Self-powered and self-functional cotton sock using piezoelectric and triboelectric hybrid mechanism for healthcare and sports monitoring. ACS Nano 13, 1940–1952 (2019).

    Google Scholar 

  124. Andrew, T. L. et al. Melding vapor-phase organic chemistry and textile manufacturing to produce wearable electronics. Acc. Chem. Res. 51, 850–859 (2018).

    Google Scholar 

  125. Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021).

    Google Scholar 

  126. Fang, Y. et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 33, 2104178 (2021).

    Google Scholar 

  127. Coyle, S. et al. Biotex—biosensing textiles for personalised healthcare management. IEEE Trans. Inf. Technol. Biomed. 14, 364–370 (2010).

    Google Scholar 

  128. Yang, Z. et al. Graphene textile strain sensor with negative resistance variation for human motion detection. ACS Nano 12, 9134–9141 (2018).

    Google Scholar 

  129. Parrilla, M., Cánovas, R., Jeerapan, I., Andrade, F. J. & Wang, J. A textile-based stretchable multi-ion potentiometric sensor. Adv. Healthc. Mater. 5, 996–1001 (2016).

    Google Scholar 

  130. Smith, M. K. & Mirica, K. A. Self-organized frameworks on textiles (soft): conductive fabrics for simultaneous sensing, capture, and filtration of gases. J. Am. Chem. Soc. 139, 16759–16767 (2017).

    Google Scholar 

  131. Zhao, X. et al. Soft fibers with magnetoelasticity for wearable electronics. Nat. Commun. 12, 6755 (2021).

    Google Scholar 

  132. Fan, W. et al. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 6, eaay2840 (2020).

    Google Scholar 

  133. Mattay, V. S. et al. Neurophysiological correlates of age-related changes in human motor function. Neurology 58, 630–635 (2002).

    Google Scholar 

  134. Ahn, S. et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy 74, 104932 (2020).

    Google Scholar 

  135. Luo, Y. et al. Learning human–environment interactions using conformal tactile textiles. Nat. Electron. 4, 193–201 (2021).

    Google Scholar 

  136. Varatharajan, R., Manogaran, G., Priyan, M. K. & Sundarasekar, R. Wearable sensor devices for early detection of Alzheimer disease using dynamic time warping algorithm. Clust. Comput. 21, 681–690 (2018).

    Google Scholar 

  137. Homayounfar, S. Z. et al. Multimodal smart eyewear for longitudinal eye movement tracking. Matter 3, 1275–1293 (2020).

    Google Scholar 

  138. Jia, Z. et al. Bioinspired conductive silk microfiber integrated bioelectronic for diagnosis and wound healing in diabetes. Adv. Funct. Mater. 31, 2010461 (2021).

    Google Scholar 

  139. Quandt, B. M. et al. Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles. Adv. Healthc. Mater. 4, 330–355 (2015).

    Google Scholar 

  140. Morris, D. et al. Bio-sensing textile based patch with integrated optical detection system for sweat monitoring. Sens. Actuat. B Chem. 139, 231–236 (2009).

    Google Scholar 

  141. Rein, M. et al. Diode fibres for fabric-based optical communications. Nature 560, 214–218 (2018).

    Google Scholar 

  142. Bennett, A. et al. Monitoring of vital bio-signs by analysis of speckle patterns in a fabric-integrated multimode optical fiber sensor. Opt. Express 28, 20830–20844 (2020).

    Google Scholar 

  143. Krehel, M. et al. Development of a luminous textile for reflective pulse oximetry measurements. Biomed. Opt. Express 5, 2537–2547 (2014).

    Google Scholar 

  144. Peng, Y. & Cui, Y. Advanced textiles for personal thermal management and energy. Joule 4, 724–742 (2020).

    Google Scholar 

  145. Afroj, S. et al. Engineering graphene flakes for wearable textile sensors via highly scalable and ultrafast yarn dyeing technique. ACS Nano 13, 3847–3857 (2019).

    Google Scholar 

  146. Siren; https://siren.care/

  147. Shim, B. S., Chen, W., Doty, C., Xu, C. & Kotov, N. A. Smart electronic yarns and wearable fabrics for human biomonitoring made by carbon nanotube coating with polyelectrolytes. Nano Lett. 8, 4151–4157 (2008).

    Google Scholar 

  148. He, W. et al. Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 5, eaax0649 (2019).

    Google Scholar 

  149. Wang, L. et al. Weaving sensing fibers into electrochemical fabric for real-time health monitoring. Adv. Funct. Mater. 28, 1804456 (2018).

    Google Scholar 

  150. Jia, T. et al. Moisture sensitive smart yarns and textiles from self-balanced silk fiber muscles. Adv. Funct. Mater. 29, 1808241 (2019).

    Google Scholar 

  151. Ma, L. et al. Full-textile wireless flexible humidity sensor for human physiological monitoring. Adv. Funct. Mater. 29, 1904549 (2019).

    Google Scholar 

  152. Weremczuk, J., Tarapata, G. & Jachowicz, R. Humidity sensor printed on textile with use of ink-jet technology. Procedia Eng. 47, 1366–1369 (2012).

    Google Scholar 

  153. Rauf, S. et al. Highly selective metal–organic framework textile humidity sensor. ACS Appl. Mater. Interfaces 12, 29999–30006 (2020).

    Google Scholar 

  154. Jeerapan, I., Sempionatto, J. R., Pavinatto, A., You, J.-M. & Wang, J. Stretchable biofuel cells as wearable textile-based self-powered sensors. J. Mater. Chem. A 4, 18342–18353 (2016).

    Google Scholar 

  155. Xiao, X. et al. An ultrathin rechargeable solid-state zinc ion fiber battery for electronic textiles. Sci. Adv. 7, eabl3742 (2021).

    Google Scholar 

  156. Chen, J. et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016).

    Google Scholar 

  157. Cheng, H. et al. Textile electrodes woven by carbon nanotube–graphene hybrid fibers for flexible electrochemical capacitors. Nanoscale 5, 3428–3434 (2013).

    Google Scholar 

  158. Zhang, N. et al. Photo-rechargeable fabrics as sustainable and robust power sources for wearable bioelectronics. Matter 2, 1260–1269 (2020).

    Google Scholar 

  159. Davenport, M. et al. New and developing diagnostic technologies for urinary tract infections. Nat. Rev. Urol. 14, 296–310 (2017).

    Google Scholar 

  160. Vargas, A. J. & Harris, C. C. Biomarker development in the precision medicine era: lung cancer as a case study. Nat. Rev. Cancer 16, 525–537 (2016).

    Google Scholar 

  161. Cook, A. M. & Polgar, J. M. Assistive Technologies e-Book: Principles and Practice (Elsevier, 2014).

  162. Awad, L. N. et al. A soft robotic exosuit improves walking in patients after stroke. Sci. Transl. Med. 9, eaai9084 (2017).

    Google Scholar 

  163. Heim, F., Durand, B. & Chakfe, N. Textile heartvalve prosthesis: manufacturing process and prototype performances. Text. Res. J. 78, 1124–1131 (2008).

    Google Scholar 

  164. Zhou, Z. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 3, 571–578 (2020).

    Google Scholar 

  165. Palarum; https://palarum.org/

  166. Choi, S. et al. Stretchable heater using ligand-exchanged silver nanowire nanocomposite for wearable articular thermotherapy. ACS Nano 9, 6626–6633 (2015).

    Google Scholar 

  167. Zhao, X. et al. Smart Ti3C2Tx mxene fabric with fast humidity response and joule heating for healthcare and medical therapy applications. ACS Nano 14, 8793–8805 (2020).

    Google Scholar 

  168. Hazarika, A. et al. Woven kevlar fiber/polydimethylsiloxane/reduced graphene oxide composite-based personal thermal management with freestanding Cu–Ni core–shell nanowires. Nano Lett. 18, 6731–6739 (2018).

    Google Scholar 

  169. Liang, K., Carmone, S., Brambilla, D. & Leroux, J.-C. 3D printing of a wearable personalized oral delivery device: a first-in-human study. Sci. Adv. 4, eaat2544 (2018).

    Google Scholar 

  170. Amjadi, M., Sheykhansari, S., Nelson, B. J. & Sitti, M. Recent advances in wearable transdermal delivery systems. Adv. Mater. 30, 1704530 (2018).

    Google Scholar 

  171. Joo, H. et al. Soft implantable drug delivery device integrated wirelessly with wearable devices to treat fatal seizures. Sci. Adv. 7, eabd4639 (2021).

    Google Scholar 

  172. Lee, H. et al. Device-assisted transdermal drug delivery. Adv. Drug Deliv. Rev. 127, 35–45 (2018).

    Google Scholar 

  173. Xiao, X., Chen, G., Libanori, A. & Chen, J. Wearable triboelectric nanogenerators for therapeutics. Trends Chem. 3, 279–290 (2021).

    Google Scholar 

  174. Liu, M. et al. Electronic textiles based wearable electrotherapy for pain relief. Sens. Actuat. A Phys. 303, 111701 (2020).

    Google Scholar 

  175. Jeong, S.-H. et al. Accelerated wound healing with an ionic patch assisted by a triboelectric nanogenerator. Nano Energy 79, 105463 (2021).

    Google Scholar 

  176. Shi, X. et al. Large-area display textiles integrated with functional systems. Nature 591, 240–245 (2021).

    Google Scholar 

  177. Zhang, X. et al. Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting. Nature 566, 368–372 (2019).

    Google Scholar 

  178. Medical Smart Textiles Market by Technology (Textile Sensors, Wearable Technology), by Application (Surgery, Bio-monitoring, Therapy, and Wellness), by End-use (Hospitals and Clinics, Medical Academic and Research Center), and by Region. (Emergen Research, 2021); https://www.emergenresearch.com/industry-report/medical-smart-textiles-market

  179. Hexoskin; https://www.hexoskin.com/

  180. The Next Generation in Dressable Smart Sensing Medical Device Garment (HealthWatch, 2021); https://healthwatchtech.com/

  181. Nextiles; https://www.nextiles.tech/

  182. Xenoma; https://xenoma.com/

  183. Skiin; https://skiin.com/

  184. Texis; https://www.texisense.com/

  185. Sensoria Health; https://www.sensoriahealth.com/products/

  186. BioSerenity; https://www.bioserenity.com

  187. DuPont; https://electronics-imaging.dupont.com/intexar

  188. Hitoe; https://www.hitoe.toray

  189. Evaluation Procedure for Electrical Resistance of Electronically-Integrated Textiles (AATCC, 2020).

  190. Ipc-8921 Requirements for Woven and Knitted Electronic Textiles (e-Textiles) Integrated with Conductive Fibers, Conductive Yarns and/or Wires (IPC, 2019).

  191. Textiles and Textile Products—Smart (Intelligent) Textiles—Definitions, Categorisation, Applications and Standardization Needs (ISO, 2020).

  192. Nanowear; https://www.nanowearinc.com/

  193. 510(k) Premarket Notification simplECG (FDA, 2016); https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfpmn/pmn.cfm?ID=K161431

  194. Code of Federal Regulations Title 21 (FDA, 2020); https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/cfrsearch.cfm?fr=870.2910

  195. 510(k) Premarket Notification Master Caution Device MCD (FDA, 2015); https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfPMN/pmn.cfm?ID=K142476

  196. Workshops and Conferences (medical devices). (FDA, 2020); https://wayback.archive-it.org/7993/20201217211859/;https://www.fda.gov/medical-devices/news-events-medical-devices/workshops-conferences-medical-devices

  197. Multi-stakeholder Workshop to Support Implementation of the Medical Devices Regulation on Drug–Device Combinations (EMA, 2020); https://www.ema.europa.eu/en/events/multi-stakeholder-workshop-support-implementation-medical-devices-regulation-drug-device

  198. Pharmaceuticals and Medical Devices Agency; https://www.pmda.go.jp/english/index.html

  199. National Medical Products Administration; http://english.nmpa.gov.cn/medicaldevices.html

  200. CONTEXT; https://www.context-cost.eu/

  201. Xu, X. et al. A real-time wearable UV-radiation monitor based on a high-performance p-CuZnS/n-TiO2 photodetector. Adv. Mater. 30, 1803165 (2018).

    Google Scholar 

  202. Chen, B. Z., Zhang, L. Q., Xia, Y. Y., Zhang, X. P. & Guo, X. D. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 6, eaba7260 (2020).

    Google Scholar 

  203. Zhou, F. & Chai, Y. Near-sensor and in-sensor computing. Nat. Electron. 3, 664–671 (2020).

    Google Scholar 

  204. Loke, G. et al. Computing fabrics. Matter 2, 786–788 (2020).

    Google Scholar 

  205. Yin, L. et al. A self-sustainable wearable multi-modular e-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    Google Scholar 

  206. Tian, X. et al. Wireless body sensor networks based on metamaterial textiles. Nat. Electron. 2, 243–251 (2019).

    Google Scholar 

  207. Liu, S., Ma, K., Yang, B., Li, H. & Tao, X. Textile electronics for VR/AR applications. Adv. Funct. Mater. 31, 2007254 (2021).

    Google Scholar 

  208. Tang, T.-C. et al. Materials design by synthetic biology. Nat. Rev. Mater. 6, 332–350 (2021).

    Google Scholar 

  209. Kang, J., Tok, J. B. H. & Bao, Z. Self-healing soft electronics. Nat. Electron. 2, 144–150 (2019).

    Google Scholar 

  210. Jur, J. S., Sweet, W. J. III, Oldham, C. J. & Parsons, G. N. Atomic layer deposition of conductive coatings on cotton, paper, and synthetic fibers: conductivity analysis and functional chemical sensing using ‘all-fiber’ capacitors. Adv. Funct. Mater. 21, 1993–2002 (2011).

    Google Scholar 

  211. Ma, H., Yip, H.-L., Huang, F. & Jen, A. K.-Y. Interface engineering for organic electronics. Adv. Funct. Mater. 20, 1371–1388 (2010).

    Google Scholar 

  212. Dong, K. et al. Shape adaptable and highly resilient 3D braided triboelectric nanogenerators as e-textiles for power and sensing. Nat. Commun. 11, 2868 (2020).

    Google Scholar 

  213. Standards by ISO/TC 38/SC 24—Conditioning Atmospheres and Physical Tests for Textile Fabrics (ISO, 2021); https://www.iso.org/committee/48344/x/catalogue/

  214. Smartx; https://www.smartx-europe.eu/

  215. He, J. et al. Scalable production of high-performing woven lithium-ion fibre batteries. Nature 597, 57–63 (2021).

    Google Scholar 

  216. Chen, L. et al. Textile-based capacitive sensor for physical rehabilitation via surface topological modification. ACS Nano 14, 8191–8201 (2020).

    Google Scholar 

  217. Peng, Y. et al. Nanoporous polyethylene microfibres for large-scale radiative cooling fabric. Nat. Sustain. 1, 105–112 (2018).

    Google Scholar 

  218. Kim, H. et al. Spirally wrapped carbon nanotube microelectrodes for fiber optoelectronic devices beyond geometrical limitations toward smart wearable e-textile applications. ACS Nano 14, 17213–17223 (2020).

    Google Scholar 

Download references

Acknowledgements

We acknowledge the Henry Samueli School of Engineering & Applied Science and the Department of Bioengineering at the University of California, Los Angeles, for start-up support. J.C. also acknowledges a 2020 Okawa Foundation Research Grant, the 2021 Hellman Follows Fund, and the invitation for this Review paper.

Author information

Authors and Affiliations

Authors

Contributions

J.C. initialized and supervised the project. A.L., G.C. and J.C. coordinated data collection, analysis and writing of the manuscript. X.Z. and Y.Z. helped with figure design and made technical comments. All authors contributed to the discussions and revised the manuscript at all stages.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Electronics thanks Guosong Hong, Nazmul Karim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Libanori, A., Chen, G., Zhao, X. et al. Smart textiles for personalized healthcare. Nat Electron 5, 142–156 (2022). https://doi.org/10.1038/s41928-022-00723-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41928-022-00723-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing