Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Direct electrical modulation of second-order optical susceptibility via phase transitions

Abstract

Electrical modulation of nonlinear optical signals is crucial for emerging applications in communications and photonic circuits. However, current methods of modulating the second-order optical susceptibility involve indirectly and inefficiently changing the third-order susceptibility. Here we show that electrical switching of the crystal structure of monolayer molybdenum ditelluride can be used to directly modulate the second-order susceptibility. This approach leads to modulation of the second-harmonic generation with an on/off ratio of 1,000 and modulation strength of 30,000% per volt, as well as broadband operation of 300 nm. We also show that molybdenum ditelluride bilayers exhibit opposite modulation trends due to electrically induced heterostructures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Direct electrical modulation of second-order optical susceptibility χ(2) based on layered MoTe2.
Fig. 2: Broadband and giant SHG tunability in monolayer MoTe2 through electrically induced phase transition.
Fig. 3: Extremely high SHG modulation strength on a monolayer MoTe2 device.
Fig. 4: Layer-dependent SHG modulation and electrically induced 1T'/1H heterostructures.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. 1.

    Cai, W., Vasudev, A. P. & Brongersma, M. L. Electrically controlled nonlinear generation of light with plasmonics. Science 333, 1720–1723 (2011).

    Article  Google Scholar 

  2. 2.

    Smith, S. D. Lasers, nonlinear optics and optical computers. Nature 316, 319–324 (1985).

    Article  Google Scholar 

  3. 3.

    Boyd, R. W. & Prato, D. Nonlinear Optics (Elsevier Science, 2008).

  4. 4.

    Paesani, S. et al. Generation and sampling of quantum states of light in a silicon chip. Nat. Phys. 15, 925–929 (2019).

    Article  Google Scholar 

  5. 5.

    Caspani, L. et al. Integrated sources of photon quantum states based on nonlinear optics. Light Sci. Appl. 6, e17100 (2017).

    Article  Google Scholar 

  6. 6.

    Woods, D. & Naughton, T. J. Photonic neural networks. Nat. Phys. 8, 257–259 (2012).

    Article  Google Scholar 

  7. 7.

    Terhune, R. W., Maker, P. D. & Savage, C. M. Optical harmonic generation in calcite. Phys. Rev. Lett. 8, 404–406 (1962).

  8. 8.

    Kang, L. et al. Electrifying photonic metamaterials for tunable nonlinear optics. Nat. Commun. 5, 4680 (2014).

  9. 9.

    Kumar, N. et al. Second harmonic microscopy of monolayer MoS2. Phys. Rev. B 87, 161403 (2013).

    Article  Google Scholar 

  10. 10.

    Song, Y. et al. Second harmonic generation in atomically thin MoTe2. Adv. Opt. Mater. 6, 1701334 (2018).

    Article  Google Scholar 

  11. 11.

    Wen, X., Gong, Z. & Li, D. Nonlinear optics of two‐dimensional transition metal dichalcogenides. InfoMat 1, 317–337 (2019).

    Article  Google Scholar 

  12. 12.

    Zhao, M. et al. Atomically phase-matched second-harmonic generation in a 2D crystal. Light Sci. Appl. 5, e16131 (2016).

    Article  Google Scholar 

  13. 13.

    Ye, Z. et al. Probing excitonic dark states in single-layer tungsten disulfide. Nature 513, 214–218 (2014).

    Article  Google Scholar 

  14. 14.

    Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  Google Scholar 

  15. 15.

    Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    Article  Google Scholar 

  16. 16.

    Chernikov, A., Ruppert, C., Hill, H. M., Rigosi, A. F. & Heinz, T. F. Population inversion and giant bandgap renormalization in atomically thin WS2 layers. Nat. Photon. 9, 466–470 (2015).

    Article  Google Scholar 

  17. 17.

    Li, Y., Duerloo, K.-A. N., Wauson, K. & Reed, E. J. Structural semiconductor-to-semimetal phase transition in two-dimensional materials induced by electrostatic gating. Nat. Commun. 7, 10671 (2016).

    Article  Google Scholar 

  18. 18.

    Wang, Y. et al. Structural phase transition in monolayer MoTe2 driven by electrostatic doping. Nature 550, 487–491 (2017).

    Article  Google Scholar 

  19. 19.

    Chen, S., Li, K. F., Li, G., Cheah, K. W. & Zhang, S. Gigantic electric-field-induced second harmonic generation from an organic conjugated polymer enhanced by a band-edge effect. Light Sci. Appl. 8, 17 (2019).

  20. 20.

    Ren, M. L., Berger, J. S., Liu, W., Liu, G. & Agarwal, R. Strong modulation of second-harmonic generation with very large contrast in semiconducting CdS via high-field domain. Nat. Commun. 9, 186 (2018).

  21. 21.

    Seyler, K. L. et al. Electrical control of second-harmonic generation in a WSe2 monolayer transistor. Nat. Nanotechnol. 10, 407–411 (2015).

    Article  Google Scholar 

  22. 22.

    Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 7, 845–854 (2008).

    Article  Google Scholar 

  23. 23.

    Ruppert, C., Aslan, B. & Heinz, T. F. Optical properties and band gap of single- and few-layer MoTe2 crystals. Nano Lett. 14, 6231–6236 (2014).

    Article  Google Scholar 

  24. 24.

    Liu, A., Gleason, K. K. & Wang, M. Vapor-deposited nanoscale ionic liquid gels as gate insulators for low-voltage high-speed thin film transistors. US patent 10,510,971 (2019).

  25. 25.

    Moon, H. et al. Synthesis of ultrathin polymer insulating layers by initiated chemical vapour deposition for low-power soft electronics. Nat. Mater. 14, 628–635 (2015).

    Article  Google Scholar 

  26. 26.

    Malard, L. M., Alencar, T. V., Barboza, A. P. M., Mak, K. F. & de Paula, A. M. Observation of intense second harmonic generation from MoS2 atomic crystals. Phys. Rev. B 87, 201401(R) (2013).

  27. 27.

    Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    Article  Google Scholar 

  28. 28.

    Yu, H., Talukdar, D., Xu, W., Khurgin, J. B. & Xiong, Q. Charge-induced second-harmonic generation in bilayer WSe2. Nano Lett. 15, 5653–5657 (2015).

    Article  Google Scholar 

  29. 29.

    Roldán, R., Cappelluti, E. & Guinea, F. Interactions and superconductivity in heavily doped MoS2. Phys. Rev. B 88, 054515 (2013).

  30. 30.

    Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

  31. 31.

    Ramasubramaniam, A. Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012).

  32. 32.

    Xu, X. et al. Seeded 2D epitaxy of large-area single-crystal films of the van der Waals semiconductor 2H MoTe2. Science 372, 195–200 (2021).

    Article  Google Scholar 

  33. 33.

    Liu, F. et al. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 367, 903–906 (2020).

    Article  Google Scholar 

  34. 34.

    Shim, J. et al. Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials. Science 362, 665–670 (2018).

    Article  Google Scholar 

  35. 35.

    Wang, X. et al. Realization of vertical metal semiconductor heterostructures via solution phase epitaxy. Nat. Commun. 9, 3611 (2018).

Download references

Acknowledgements

This work is supported by the Gordon and Betty Moore Foundation (award no. 5722) and the Ernest S. Kuh Endowed Chair Professorship.

Author information

Affiliations

Authors

Contributions

Y.W. and X.Z. initiated the research and designed the experiments. Y.W. and J.X. performed the SHG measurements. Y.W. and T.-F.C. fabricated the devices. Y.W. J.X., Z.N. and S.Y. analysed the data with X.Z. All the authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Electronics thanks Ueli Koch, Zheng Liu and Shuang Zhang for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion and Figs. 1–8.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Xiao, J., Chung, TF. et al. Direct electrical modulation of second-order optical susceptibility via phase transitions. Nat Electron 4, 725–730 (2021). https://doi.org/10.1038/s41928-021-00655-0

Download citation

Search

Quick links